Theses and Dissertations at Montana State University (MSU)
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/733
Browse
1 results
Search Results
Item RadPC@Scale: an approach to mitigate single event upsets in the memory of space computers(Montana State University - Bozeman, College of Engineering, 2022) Williams, Justin Patrick; Chairperson, Graduate Committee: Brock LaMeresThis thesis presents the flight test results of a single event upset (SEU) mitigation strategy for computer data memory. This memory fault mitigation strategy is part of a larger effort to build a radiation tolerant computing system using commercial-off-the-shelf (COTS) field programmable gate arrays (FPGAs) called RadPC. While previous iterations of RadPC used FPGA block RAM (BRAM) for its data memory, the specific component of RadPC that is presented in this paper is a novel external memory scheme with accompanying systems that can detect, and correct faults that occur in the proposed data memory of the computer while allowing the computer to continue foreground operation. A prototype implementation of this memory protection scheme was flown on a Raven Aerostar Thunderhead high-altitude balloon system in July of 2021. This flight carried the experiment to an altitude of 75,000 feet for 50 hours allowing the memory in the experiment to be bombarded with ionizing radiation without being attenuated by the majority of Earth's atmosphere. This thesis discusses the details of the fault mitigation strategy, the design-of-experiments for the flight demonstration, and the results from the flight data. This thesis may be of interest to engineers that are designing flight computer systems that will be exposed to ionizing radiation and are looking for a lower cost SEU mitigation strategy compared to existing radiation- hardened solutions.