Theses and Dissertations at Montana State University (MSU)

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/733

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Investigation of field relevant parameters for microbially enhanced coalbed methane scale up
    (Montana State University - Bozeman, College of Engineering, 2019) Platt, George Addison; Chairperson, Graduate Committee: Robin Gerlach; K. J. Davis, E. P. Barnhart, M. W. Fields and R. Gerlach were co-authors of the article, 'Optimization of 13C-algae amendment concentration for enhanced coal dependent methanogenesis' submitted to the journal 'International journal of coal geology' which is contained within this thesis.; K. J. Davis, H. D. Schweitzer, H. J. Smith, E. P. Barnhart, M. W. Fields, R. Gerlach were co-authors of the article, 'Algal amendment enhances biogenic methane production from coals of different thermal maturity' submitted to the journal 'International journal of coal geology' which is contained within this thesis.
    Energy production from coal is projected to decline significantly over the next 30 years, due to concerns over anthropogenic carbon emissions, climate change, and cost. As coal-based energy production decreases, the demand for natural gas is expected to increase. Coalbed methane (CBM), a biogenic natural gas resource found in subsurface coal beds, may aid in meeting the projected increase in demand. However, costs associated with traditional CBM extraction currently make utilizing this resource economically prohibitive due to slow coal-to-methane conversion rates and the necessity to treat co-produced water. Algae can be cultivated in co-produced formation water and the addition of very small amounts of this algal biomass can increase coal-to-methane conversion rates. The goal of this work was to determine the optimal algae amendment concentration for the enhancement of microbial coal-to-methane conversion to maximize return on investment. Concentrations of 13C-labeled algae amendment ranging from 0.01-0.50 g/L (equivalent to 0.0001-0.005 g per g of coal) were tested in coal-containing batch microcosms. Enhanced methane production was observed in all amended microcosms and maximum methane production occurred between 169-203 days earlier than in unamended microcosms. When as little as 0.01 g/L algae amendment was added, 13CH 4 and 12CH 4 tracking revealed that the improvement in coal-to-methane conversion kinetics was due to enhanced coal degradation. Increasing amendment concentrations to 0.05-0.50 g/L improved coal-to-methane conversion rates further, but improvements from amendment concentrations above 0.05 g/L were insignificant. The geologic scope of this CBM enhancement strategy was investigated by studying methane production from five coals ranging in thermal maturity. Biogenic methane was produced from all coals, with subbituminous coals generally producing more methane than thermally mature bituminous coals. The addition of algae amendment to thermally mature coal microcosms resulted in methane production that was comparable to production from unamended, thermally immature coals. This improvement was associated with an increased relative abundance of coal degrading microorganisms. Collectively, this work demonstrates that algae amendment concentrations can be reduced further (to 0.01-0.05 g/L) relative to the previously investigated concentrations (ranging from 0.1-0.5 g/L) and still improve coal-to-methane conversion rates for a range of coal sources.
  • Thumbnail Image
    Item
    Spectral signs of life in ice
    (Montana State University - Bozeman, College of Engineering, 2020) Messmer, Mitch Wade; Chairperson, Graduate Committee: Christine Foreman
    In astrobiology, new technologies are being implemented in the search for extraterrestrial life. Interpreting results from new analytical techniques requires additional information about microbial properties. A catalogue of identifying characteristics, called biosignatures was created for bacterial and algal isolates from Greenland and Antarctica by measuring substrate utilization, UV/Vis absorbance, Fourier-Transform Infrared Spectroscopy, and Raman spectroscopy. Organisms were chosen from environments analogous to Martian glacier systems. Spectral properties of these polar isolates could serve as a reference for interpreting results from NASA's Perseverance rover. Substrate utilization was evaluated using EcoPlates on an Omnilog plate reader (Biolog, California, U.S.A.). UV/Vis absorbance spectra indicated that nine of the twenty-five bacterial isolates contained carotenoid pigments, and one contained violacein. UV/Vis analysis was effective at identifying the presence of pigments, but was insufficient for distinguishing between the types of carotenoids. FTIR analysis identified general biological features such as lipids, proteins, and carbohydrates, but did not detect pigments. Raman analysis of isolates with a 532 nm laser identified both the presence of carotenoid and violacein pigments, and the general cell features observed with FTIR. The degree of saturation of membrane lipids was evaluated for the bacterial isolates by comparing the ratio of unsaturated and saturated fatty acid peaks in the Raman spectra. Results were similar for the polar isolates and mesophiles, excluding the Bacillus subtilis spores. A principal component analysis was conducted to determine the regions of the spectra that contributed the variability between samples. The spectra of the bacterial isolates were more closely related based on colony color than phylogeny. Analysis of the algal isolates indicated that chlorophyll A and B fluoresced under exposure to the 532 nm laser, creating definitive biosignatures for algae. These analytical techniques proved effective at identifying cell properties that could serve as biosignatures for identifying microbial life. Identification of the spectral features of these cellular components may aid in narrowing the search for extraterrestrial life by highlighting specific target regions within the Raman spectra. Characteristics of these polar microbes may provide the foundation for interpreting spectral data collected from future explorations of extraterrestrial environments in the search for astrobiology.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.