Theses and Dissertations at Montana State University (MSU)
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/733
Browse
1 results
Search Results
Item Predicting anticancer peptides and protein function with deep learning(Montana State University - Bozeman, College of Engineering, 2020) Lane, Nathaniel Patrick; Chairperson, Graduate Committee: Indika KahandaAnticancer peptides (ACPs) are a promising alternative to traditional chemotherapy. To aid wet-lab and clinical research, there is a growing interest in using machine learning techniques to help identify good ACP candidates computationally. In this work, we develop DeepACPpred, a novel deep learning model for predicting ACPs using their amino acid sequences. Using several gold-standard ACP datasets, we demonstrate that DeepACPpred is highly effective compared to state-of-the-art ACP prediction models. Furthermore, we adapt the above neural network model for predicting protein function and report our experience with participating in a community-wide large-scale assessment of protein functional annotation tools.