Theses and Dissertations at Montana State University (MSU)

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/733

Browse

Search Results

Now showing 1 - 10 of 22
  • Thumbnail Image
    Item
    When and where does irrigation water originate? Leveraging stable water isotopes and synthetic aperture radar to assess the complex hydrology of a snow-dominated catchment in southwestern Montana
    (Montana State University - Bozeman, College of Letters & Science, 2023) Rickenbaugh, Eliza Apple; Chairperson, Graduate Committee: Eric A. Sproles; This is a manuscript style paper that includes co-authored chapters.
    Many agricultural regions around the world rely on water stored in mountainous snowpacks for irrigation supply. Consequently, our current and future ability to produce food is threatened by more frequent, severe, and extended snow droughts. As these snow droughts intensify, water resource managers will need more efficient and accurate methods to characterize the snowmelt cycle and forecast water availability. Focusing on a montane headwater catchment in Southwestern Montana (423 km 2 in area, between 1465 m to 3270 m in elevation), we integrate in-situ and remotely sensed data to assess the relative contributions of groundwater and the current season's snowmelt to irrigation supply for water year (WY, Oct 1 - Sep 30) 2023. To understand the period over which snow contributes to stream water in this catchment, we analyze backscatter data from Sentinel-1 Synthetic Aperture Radar (SAR). This provides approximate dates of snowmelt runoff onset at 10 m resolution every twelve days. We find that the median date of snowmelt runoff onset in WY 2023 in this catchment was April 20, six days later than the 7-year median date of snowmelt runoff onset. To assess relative contributions to streamflow we compare stable water isotope ratios (deltaH2 and deltaO18) from biweekly samples of stream water at low elevations against monthly samples of snow and groundwater. Samples range in elevation from 1,475 m to 2,555 m. We find that stream water below the highest diversion point is predominantly composed of groundwater. Results demonstrate alignment between two disparate approaches for estimating temporal trends in snowpack contribution to stream flow. While our work focuses on a catchment in Montana, the efforts and approaches used are potentially applicable globally for agricultural regions that rely on snowmelt for irrigation.
  • Thumbnail Image
    Item
    Modeling snow water equivalent in complex mountainous terrain
    (Montana State University - Bozeman, College of Letters & Science, 2023) Beck, Madeline Makenzie; Chairperson, Graduate Committee: Eric A. Sproles; This is a manuscript style paper that includes co-authored chapters.
    The water stored in seasonal mountain snowpacks is a vital resource that approximately 20% of the world's population relies on for freshwater availability. However, accurately quantifying the amount of water stored in a snowpack, known as snow water equivalent (SWE), is difficult. The longest employed technique to quantify SWE is manual measurements. However, manual measurements of SWE are time intensive. As a result, researchers can collect relatively few point-based measurements across spatially extensive and complex regions. Automated weather stations may provide additional measurements of SWE and meteorological conditions but are expensive and difficult to maintain. Thus, reliable measurements of snow characteristics like SWE are scarce across time and space. A lack of extensive measurements causes data from few points to be extrapolated across spatially heterogeneous environments which increases uncertainty in estimates of water availability. Recent advances in satellite remote sensing allow researchers to observe snowpack dynamics across spatially continuous scales instead of relying solely on point-based measurements. However, current satellite technologies are incapable of collecting high- resolution snow data at the hillslope scale. Previous work has shown the importance of high elevation, hillslope-scale water storage reservoirs. Uncrewed aerial vehicles (UAVs) address the limitations of satellite remote sensing on the hillslope scale and are used to create high accuracy (<5 cm) models of snow depth. However, these models of snow depth provide no information on the amount of water stored without a value for snow bulk density. Thus, to capture hillslope dynamics of SWE, researchers must pair high-resolution models of snow depth with either directly measured or modeled bulk density of snow. This master's thesis integrates UAV-derived measurements of snow depth with modeled snow bulk density values to create continuous representations of hillslope-scale SWE across 9 flight dates. We found that each density modeling approach consistently underestimated SWE for the field site for each flight date except one. Further, each method of modeling snow bulk density was statistically indiscernible from each other. These findings highlight the heterogeneity of snow in mountainous terrain. In future work, bulk density models can be further parameterized to better represent site-specific values of SWE.
  • Thumbnail Image
    Item
    Atmospheric processes related to deep persistent slab avalanches in the western United States
    (Montana State University - Bozeman, College of Letters & Science, 2019) Schauer, Andrew Robert; Chairperson, Graduate Committee: Jordy Hendrikx
    Deep persistent slab avalanches are a natural hazard that are particularly difficult to predict. These avalanches are capable of destroying infrastructure in mountain settings, and are generally unsurvivable by humans. Deep persistent slab avalanches are characterized by a thick (> 1 m) slab of cohesive snow overlaying a weak layer in the snowpack, which can fail due to overburden stress of the slab itself or to external triggers such as falling cornices, explosives, or a human. While formation of such snowpack structure is controlled by persistent weather patterns early in the winter, a snowpack exhibiting characteristics capable of producing a deep persistent slab avalanche may exist for weeks or months before a specific weather event such as a heavy precipitation or rapid warming pushes the weak layer to its breaking point. Mountain weather patterns are highly variable down to the local scale (1-10 m), but they are largely driven by atmospheric processes on the continental scale (1000 km). This work relates atmospheric circulation to deep persistent slab events at Mammoth, CA; Bridger Bowl, MT; and Jackson, WY. We classify 5,899 daily 500 millibar geopotential height maps into 20 synoptic types using Self-Organizing Maps. At each location, we examine the frequency of occurrence of each of the 20 types during November through January during major deep persistent slab seasons and compare those frequencies to seasons without deep persistent slab avalanches. We also consider the 72-hour time period preceding deep persistent slab avalanches at each location and identify synoptic types occurring frequently, as well as those rarely occurring prior to onset of activity. At each location, we find specific synoptic types that tend to occur at a higher rate during major deep persistent slab years, while minor years are characterized by different circulation patterns. We also find a small number of synoptic types dominating the 72-hour period prior to onset of deep slab activity. With this improved understanding of the atmospheric processes preceding deep persistent slab avalanches, we provide avalanche practitioners with an additional tool to better anticipate a difficult to predict natural hazard.
  • Thumbnail Image
    Item
    Using time lapse photography to document terrain preferences of backcountry skiers
    (Montana State University - Bozeman, College of Letters & Science, 2018) Saly, Diana Ilona Patricia; Chairperson, Graduate Committee: Jordy Hendrikx; Jordy Hendrikx, Karl W. Birkeland, Stuart Challender and Jerry Johnson were co-authors of the article, 'Using time lapse photograpy to document terrain preferences of backcountry skiers' submitted to the journal 'Journal of outdoor recreation and tourism' which is contained within this thesis.
    Avalanches are one of the greatest hazards for those recreating in snow covered mountainous terrain. In the past 20 years an average of 13 people in Canada and 27 people in the US are killed in avalanches each winter. Meanwhile, uncontrolled backcountry avalanche terrain use has significantly increased demonstrated by increased demand for avalanche education and increased sales in backcountry equipment. Lift-accessed backcountry (LABC), or avalanche terrain easily accessed from the ski resort, has seen increased usage since resorts opened boundaries in the mid-1990s. This has led to increased research interest in how people are using backcountry avalanche terrain. A simple method to reduce exposure to avalanche hazard is avoidance, however total avoidance is seldom practical. Professionals and recreational skiers alike mitigate avalanche hazard by managing exposure to terrain containing the avalanche hazard. Current research studies use GPS tracking to study the terrain metrics of backcountry skiers. This GPS research is limited to studying volunteers and professionals that willingly track and submit their trips. This approach ignores many users and thus presents a biased picture of use. This paper develops a method to capture the terrain metrics of all skiers on an avalanche-prone backcountry slope. A remote time-lapse camera focused on a high skier-use backcountry slope, (Saddle Peak, in the Bridger Mountain Range of southwest Montana, USA) captured skiers descending Saddle Peak in ten-second increments. Skier locations were digitized from the photos, then transformed onto a geo-referenced digital elevation model (DEM) such that terrain metrics could be applied to each skier location. Analysis of terrain metrics for each skier point compared slope, profile curvature (downslope), and plan curvature (cross slope) over days with different forecasted avalanche hazard. Terrain metrics on Considerable avalanche hazard days differed significantly from Moderate or Low avalanche hazard days (p-value < 0.001). Transformed data fell within a 49-m horizontal accuracy for all skier point locations with a 95% confidence interval. By capturing all skiers on a slope without their knowledge, the data collected provides a large and diverse data set of the terrain preferences of backcountry skiers under varying conditions.
  • Thumbnail Image
    Item
    Snow drift and avalanche activity in a high arctic maritime snow climate
    (Montana State University - Bozeman, College of Letters & Science, 2016) Hancock, Holt John; Chairperson, Graduate Committee: Jordy Hendrikx
    Snow drift endangers human life and infrastructure in alpine and arctic environments by contributing to snow avalanche formation in steep terrain and impacting transportation through reduced visibilities and drift deposition on roadways. Understanding the local and synoptic scale meteorological conditions just prior to and during hazardous snow drift conditions is a crucial element in forecasting for -- and mitigating the hazards associated with -- snow drift processes. This is especially true in Svalbard, a High Arctic Norwegian archipelago, where snow drift processes have been linked to avalanche activity and hazardous travel conditions in the region's unique, direct-action maritime snow climate. This study uses a record of road closures due to drifting snow on a mountain road to further investigate Svalbard's snow climate and avalanche regime by characterizing meteorological conditions leading to regional snow drift events and exploring the relationship between these periods of snow drift and regional avalanche activity. A nine-year record of road closures is coupled with local meteorological observations and NCEP/NCAR synoptic composite maps to characterize the local and synoptic weather conditions leading to and occurring during periods of snow drift near Longyearbyen, Svalbard's primary settlement. This record of snow drift events is then compared with regional avalanche observations using a case study approach to illustrate the relationship between snow drift and avalanche activity in Svalbard. Results show snow drift events result from five distinct synoptic circulation types and are characterized by increased wind speeds, higher precipitation totals, and elevated air temperatures relative to average winter conditions. Four case studies qualitatively illustrate the interactions between local and synoptic weather patterns, snow drift processes, and regional avalanche activity. In addition to the suggested mitigation strategies provided, these results will help advance avalanche forecasting efforts throughout the region.
  • Thumbnail Image
    Item
    Snowpack driven changes in decadal soil evolution: insights from a 48-year snow manipulation experiment
    (Montana State University - Bozeman, College of Letters & Science, 2017) Feldhaus, Aaron Michael; Chairperson, Graduate Committee: Jean Dixon
    Soil mantled landscapes are a critical interface that support biological life, weather geologic materials, and develop in response to changes in climate. Climate has long been considered a dynamic control on the evolution of Earth's landscapes. However, we have limited understanding regarding how soils respond to short-term perturbations of key climate variables like precipitation and moisture availability. Furthermore, the timescales over which diverse weathering processes feedback and measurably change soil character are still relatively uncertain, as well as how they respond to swift changes in climate. Here, we explore the role of precipitation in decadal soil evolution by utilizing a 48-year snowpack experiment located in the Greater Yellowstone Ecosystem (GYE) of SW Montana. In this unique field site, we compare soil development across experimental plots with enhanced snowpack, where snow has been doubled (2x) and quadrupled (4x) above ambient conditions for almost five decades. We find that decadal snowpack addition provides multiple pathways for enhancing soil weathering, both physically and chemically. Soils under enhanced snowpack generally contain higher amounts of fine-grained material (clay and silt) and are more acidic (lower soil pH) in nature. Significant (>85%) surface depletions of the fallout radionuclide 210 Pb and reduced surface horizon carbon and nitrogen content, along with reduced above and below ground vegetation biomass provide evidence of increased wind erosion of soils that experience enhanced winter snowpack. Modeling of diffusion-like mixing from 210 Pb profiles also indicates there is increased bioturbation intensity (soil mixing) under enhanced snowpack. We find that snowpack addition, through associated changes in plant communities and vegetation biomass, along with its effects on physical and chemical weathering processes, produces rapid and measurable changes in the weathered state of soils. Our results indicate that short-term, decadal perturbations in snowpack significantly alter weathering mechanisms in this landscape, which measurably overprint thousands of years of soil development. These findings provide novel insight into the fundamental role of climate on short-term soil evolution and have significant implications for how mountainous or snowpack-dominated systems may respond to perturbations in climate.
  • Thumbnail Image
    Item
    Understanding the spatial distribution of snow water equivalent in paired basins in southwest Montana
    (Montana State University - Bozeman, College of Letters & Science, 2015) Welz, Jason Paul; Chairperson, Graduate Committee: Jordy Hendrikx
    The goal of this research has been to build upon previous studies focused on what processes control the distribution of snow water equivalent (SWE) in alpine environments. This involved taking a comprehensive look at the widely accepted physiographic variables of: elevation, slope, aspect, solar radiation, and wind exposure, but also avalanche activity, which has been given limited explicit inclusion. The paired basin comparison adopted in this study, between a hypothesized avalanche prone basin and avalanche free basin, has been previously used to correlate avalanche activity with snowmelt runoff. However, it has not been used in an attempt to parse out which variables have the dominant influence on SWE distribution between adjacent areas of very similar physiographic character. While most previous studies have focused on the period of peak SWE to study this distribution, this current research looked at the evolution of the controlling variables throughout snowpack development. A robust dataset of snow depth and SWE measurements were collected during a January 31 - July 10, 2013 field campaign on Cedar Mountain near Big Sky, MT. Physiographic variable values were extracted from a 10 m resolution digital elevation model (DEM) at snow sample points and input as predictors of observed SWE in multiple linear regression (MLR) and binary regression tree (BRT) models to estimate SWE across the study area. Optimal models were selected by various measures of goodness of fit and cross-validation criteria. Calculated R 2 values for MLR models (0.17-0.57) and BRT models (0.33-0.66) were comparable to previous studies indicating a relative level of success in predictive performance. Subsequent analysis of each optimal model's variable selection and predicted SWE distributions revealed differences in the spatial and temporal patterns of this metric between the paired basins, confirming some well-understood processes as well as offering new insights.
  • Thumbnail Image
    Item
  • Thumbnail Image
    Item
    An integrated microstructural study of dry snow metamorphism under generalized thermal conditions
    (Montana State University - Bozeman, College of Letters & Science, 2002) Miller, Daniel August
  • Thumbnail Image
    Item
    Snow accumulation under various successional stages of lodgepole pine
    (Montana State University - Bozeman, College of Letters & Science, 1997) Moore, Chadwick Arthur
Copyright (c) 2002-2022, LYRASIS. All rights reserved.