Theses and Dissertations at Montana State University (MSU)

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/733

Browse

Search Results

Now showing 1 - 10 of 16
  • Thumbnail Image
    Item
    Environmental drivers of bee community diversity in Yellowstone National Park
    (Montana State University - Bozeman, College of Letters & Science, 2022) Switzer, Kristen Ann; Chairperson, Graduate Committee: Laura Burkle
    Pollinators are essential to their ecosystems and facing large declines. Studies on environmental drivers of bee community composition are currently lacking in North America, particularly in national parks. Understanding how bee diversity and plant-bee interactions change across environmental gradients gives us insight into the resilience of bee communities in the future. We collected data at seven sites across an elevational gradient in Yellowstone National Park. Pan traps were used to collect bee diversity data from in 2010, 2011, 2012, and 2020, and hand-netting was used to collect plant-bee interaction data from June to August 2020. We hypothesized that elevation would be a major driver of bee abundance, species richness, and community composition and that bee diversity would decrease as elevation increased. We predicted bee diversity would peak in the middle of the growing season in response to floral diversity peaking at that time. Finally, we predicted plant-bee interactions would be more generalized at higher elevations and flower species richness would be a major driver of network specialization (H2'). Our results revealed that seasonality and elevation were major drivers of bee abundance and species richness, indicating that both spatial and temporal factors are important in driving bee community patterns. Bee species richness was highest in 2010 and declined over years, which may signal that changing environmental conditions are stressing bee communities. Bee abundance and species richness declined as each growing season progressed, which aligns with broader literature on various taxa and mirrors seasonal flower diversity patterns. Despite close alignment between bee and floral diversity patterns, flower species richness was only a significant driver of bee community composition, indicating that other environmental gradients were bigger drivers of bee abundance and species richness patterns. Bee species richness was a significant driver of plant-bee network specialization and elevation, slope, and flower species richness were marginally significant, suggesting that plant- bee interactions are influenced more by spatial than temporal variables. Additional studies focusing on bee diversity across growing seasons and years could provide insights into how changing environmental conditions in the future may influence bee diversity and community resilience in Yellowstone National Park.
  • Thumbnail Image
    Item
    Reproductive ecology of hatchery-origin pallid sturgeon upstream of Fort Peck Reservoir, Montana
    (Montana State University - Bozeman, College of Letters & Science, 2020) Cox, Tanner Lewis; Chairperson, Graduate Committee: Christopher S. Guy; Christopher S. Guy and Molly A. H. Webb were co-authors of the article, 'First maturity, spawning periodicity, and follicular atresia of hatchery-origin pallid sturgeon in the Missouri River above Fort Peck Reservoir, Montana' submitted to the journal 'Journal of applied ichthyology' which is contained within this thesis.; Christopher S. Guy and Molly A. H. Webb were co-authors of the article, 'Reproductive ecology and behavior of hatchery-origin pallid sturgeon in the Missouri River above Fort Peck Reservoir, Montana' submitted to the journal 'Journal of applied ichthyology' which is contained within this thesis.
    Conservation propagation of pallid sturgeon above Fort Peck Reservoir has successfully recruited a new generation of spawning-capable pallid sturgeon to a location that would otherwise have fewer than 30 remaining. Successful recovery of pallid sturgeon will now rely on spawning in locations that provide adequate drift distance for larvae to recruit. Prior to this study, all reproductively-active female pallid sturgeon underwent ovarian follicular atresia. The reasons for and prevalence of ovarian follicular atresia were unclear, spawning periodicity of females remained undescribed, and remaining prepubescent fish indicated that age- and size-at-first maturity would vary more than currently described. Furthermore, spawning location, spawning-related interactions among conspecifics, and substrate composition at spawning locations remained undescribed. We used data on reproductive status and location to describe age- and size-at-first maturity, the prevalence of ovarian follicular atresia during first gametogenic cycles, spawning periodicity for female and male pallid sturgeon, where spawning occurs, if spawning locations are related to discharge, if substrate characteristics at the spawning locations were similar to other river reaches, and if female, male, and atretic female pallid sturgeon use the river similarly. Pallid sturgeon matured at older ages and larger sizes than described for other populations with females maturing at 18 years old and males at 15; however, prepubescent pallid sturgeon as old as 20 were documented. During the presumed-first gametogenic cycle, 62.5% of female pallid sturgeon underwent follicular atresia. Females had biennial reproductive cycles, and males had annual and biennial reproductive cycles. Reproductively-active male and female pallid sturgeon were found in similar locations, while locations of atretic female pallid sturgeon varied. The furthest upstream locations of pallid sturgeon including locations in the Marias River occurred during 2018 when discharge was at an unprecedented high. Spawning occurred in locations less than 131 km from the river-reservoir transition zone, which does not provide adequate drift-distance for larvae. Altering discharge and water temperature at Tiber Dam to mimic observed values in 2018 may increase use of the Marias River by pallid sturgeon during spawning, which would provide adequate drift distance to larvae.
  • Thumbnail Image
    Item
    Understanding the present and past climate-fire-vegetation dynamics of southern South America (40 - 45°S)
    (Montana State University - Bozeman, College of Letters & Science, 2020) Ogunkoya, Ayodele Gilbert; Chairperson, Graduate Committee: Benjamin Poulter; David Roberts (co-chair); Jed O. Kaplan, Cathy Whitlock, William Nanavati, Benjamin Poulter and David Roberts were co-authors of the article, 'Drivers of modeled forest cover change in southern South America are linked to climate and CO^2' which is contained within this thesis.; Jed O. Kaplan, Cathy Whitlock, William Nanavati, Benjamin Poulter, David Roberts and Steve Hostetler were co-authors of the article, 'Climate drivers of late-glacial to postgalacial forest cover along the eastern Andes of Northern Patagonia (lat. 40 - 45°S)' which is contained within this thesis.
    The forest-steppe boundary that runs north-to-south along the eastern Andes is particularly dynamic over millennial time scales. Yet the relative role of long-term climate change and fire is poorly understood. In this study, I analyze the potential in using a process-based model in predicting species distribution, and the role fire and climate played in shaping the vegetation and treeline dynamics of Northern Patagonia (lat. 40 - 45 ° S). Paleoecological data, e.g., pollen, has been extensively used to study the relationship between climate and vegetation but has a low spatial resolution to distinguished between climate-fire-vegetation dynamics. Process-based model thus offers a transparent and robust method of incorporating a varying degree of complexity to understand fire behavior and fire-vegetation dynamics. Recently, LPJ-GUESS was parameterized to simulate major regional plant functional type (PFTs) and tree species distributions in this region. The model is able to predict regional species distribution across spatial scales by coupling establishment, growth, and mortality processes. Predicting spatial and temporal scale species distribution cannot be achieved without having the right climate and soil data, the climate data used was downscaled from 50 km to 1 km resolution using Worldclim climate data ( ~ 1 km) as the reference data. LPJ-GUESS model produced regional species distribution with fair to very good agreement with observation. The optimization of bioclimatic parameters and drought tolerance that is related to root depth, adaptability of plant to seasonal drought, and movement of nutrients consistently improved the accuracy of regional prediction of the species range. The model predicted that the vegetation distribution of present-day is mainly determined by climate and CO 2 rather than fire., while forest productivity responds strongly to elevated CO 2. However, based on the employed statistical methods of Canonical Correspondence Analysis (CCA) and Random Forest machine learning, combined with simulation results using paleoclimate. Results show that an increase in winter temperature drives the postglacial species distribution while changes in precipitation control radial growth and seedling establishment in the upper and lower treeline. These findings emphasize the importance of combining paleoecological methods with modeling to disentangle coarse-scale climate drivers from local influences.
  • Thumbnail Image
    Item
    Varying nonlinear dependencies in habitat selection: estimating instead of imposing functional forms
    (Montana State University - Bozeman, College of Letters & Science, 2016) Ebinger, Michael Ryan; Chairperson, Graduate Committee: Robert A. Garrott
    Spatial heterogeneity of habitats and different foraging strategies can result in dissimilar patterns of habitat selection among individuals in a population. Studies have demonstrated that incorporating individual variation can influence model inferences. Thus, individual variation is increasingly being incorporated in habitat selection studies. Our objective was to advance the concept of individual variation in habitat selection by incorporating varying shapes (i.e., function forms) of responses among individuals. We used simulation modeling to develop a new analytical framework and introduce a new habitat selection metric, the Normalized Selection Ratio (NSR). Our results demonstrated the ability of the NSR to correctly estimate the strength and shape of complex simulated patterns of habitat selection, while simultaneously protecting against over-fitting. Using a simulated population of individuals, we showed how our approach can scale-up individual responses to facilitate population-level inference. We demonstrated how hierarchical clustering of individual-level response curves can identify and quantitatively describe different types of habitat selection within a population. When applied in a temporally dynamic framework, we showed that the NSR can detect ecological dynamics in habitat selection with quantitatively different inferences from analyses that pool data over time. We illustrated application of our approach using global positioning system (GPS) telemetry data for grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE). We investigated the direction (preference or avoidance) and shapes of grizzly bear selection for whitebark pine (Pinus albicaulis) habitat during fall from 2007 to 2014. Our general conclusions support previous findings that grizzly bears exhibit a high degree of individual variation in habitat selection. Our approach of hierarchically clustering response curves detected 4 groups of grizzly bears with distinctly different patterns of whitebark pine habitat selection. Based on the group-level mean responses, 77% of sampled bears selected for whitebark habitat and 23% selected for non-whitebark pine habitats. Among the hierarchical groups that selected for whitebark pine, we observed substantial variation in the strength and density of whitebark pine being used. These results demonstrated the ability of our approach to identify, quantify, and organize individual differences in habitat selection and improve our understanding of grizzly bear ecology in the GYE.
  • Thumbnail Image
    Item
    A spatiotemporal analysis of climate change in the Greater Yellowstone Ecosystem and its effects on Pinus albicaulis
    (Montana State University - Bozeman, College of Letters & Science, 2017) Chang, Tony; Chairperson, Graduate Committee: Andrew J. Hansen; Andrew J. Hansen was a co-author of the article, 'Historic and projected climate change in the Greater Yellowstone Ecosystem' in the journal 'Yellowstone science' which is contained within this thesis.; Andrew J. Hansen and Nathan Piekielek were co-authors of the article, 'Patterns and variability of projected bioclimatic habitat for Pinus albicaulis in the Greater Yellowstone area' in the journal 'PLoS one' which is contained within this thesis.; Andrew J. Hansen, Jesse Logan, Mark C. Greenwood, David W. Roberts and Jia Hu were co-authors of the article, 'A comparative severity analysis of recent Dendroctonus ponderosae outbreak and predictive hindcasts within the Greater Yellowstone Ecosystem' which is contained within this thesis.
    Climate change is arguably the biggest challenge facing humanity. Successful mitigation and adaption planning vitally requires more science in regard to its impacts on ecological systems. To address knowledge gaps regarding climate change impacts within the regional level, I performed a series of analyses on an "early responder" species in the Greater Yellowstone Ecosystem and examine how its distribution may be impacted by biotic and abiotic factors. My research aids in decision making processes for regional land managers that must address climate change in their policy decisions and increases ecological understanding at a landscape level. This manuscript includes a detailed analysis of past, present, and projected climate in the Greater Yellowstone Ecosystem. I addressed the expected impacts of present and future climate shifts on the distribution of the sub-alpine tree species, whitebark pine (Pinus albicaulis) and its main disturbance agent, mountain pine beetle (Dendroctonus ponderosae). This research found a major reduction of suitable climate habitat for P.albicaulis within the Greater Yellowstone Ecosystem under multiple Global Circulation Models and Representative Concentration Pathway futures. Finally, this research determined that the recent D.ponderosae outbreak driven by climate effects in 2000-2010, that resulted in an unprecedented mortality event on P.albicaulis was more than double the risk area size of any previous outbreak since 1951. Although more studies are necessary to reduce uncertainty and make assertive recommendations for management actions, this research suggests that future sub-alpine stand structure and composition may be radically different than anything in recent history due to range shifts of suitable climate habitat and disturbance agents, and advocates for land managers to apply a multifaceted approach of competitor thinning and controlled burning to ensure the resilience and persistence of P.albicaulis.
  • Thumbnail Image
    Item
    Effects of prolonged exposure to ammonia on rainbow trout (Salmo gairdneri) eggs and sac fry
    (Montana State University - Bozeman, College of Agriculture, 1975) Burkhalter, Dalton Earl
  • Thumbnail Image
    Item
    The responses of insect communities in the East Gallatin River, Montana, to sewage effluents
    (Montana State University - Bozeman, College of Agriculture, 1972) Glorvigen, Thomas Harvey
  • Thumbnail Image
    Item
    Ecological and morphological relationships of subspecies of Peromyscus maniculatus near St. Mary, Montana
    (Montana State University - Bozeman, College of Agriculture, 1971) Glazier, Ronald Jay
  • Thumbnail Image
    Item
    Characteristics of pocket gopher populations in relation to selected environmental factors in Pelican Valley, Yellowstone National Park
    (Montana State University - Bozeman, College of Agriculture, 1979) Youmans, Clifton Conrad
Copyright (c) 2002-2022, LYRASIS. All rights reserved.