Theses and Dissertations at Montana State University (MSU)
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/733
Browse
3 results
Search Results
Item Computational investigation on protein sequencing and genome rearrangement problems(Montana State University - Bozeman, College of Engineering, 2018) Qingge, Letu; Chairperson, Graduate Committee: Binhai ZhuDe novo protein sequencing and genome rearrangement problems are the classical problems in bioinformatics. De novo protein sequencing problem try to determine the whole sequence of amino acids based on the mass spectrometry data without using the database search. Genome rearrangement problems try to recognize the evolutionary process between two species. In this dissertation, first, we describe the process of constructing target protein sequences by utilizing mass spectrometry based data from both top-down and bottom-up tandem mass spectra. In addition to using data from mass spectrometry analysis, we also utilize techniques for de novo protein sequencing using a homologous protein sequence as a reference to attempt to fill in any remaining gaps in the constructed protein scaffold. Initial results for analysis on real datasets yield over 96-100% coverage and 73-91% accuracy with the target protein sequence. Second, we use different genome rearrangement operations to transform one genome to another such that the similarity between two genomes is maximized. We explore these problems in terms of theoretical and experimental analysis. For sorting unsigned genome problem by double cut and join (DCJ) operation, we design a randomized fixed parameter tractable (FPT) approximation algorithm for computing the DCJ distance with an approximation factor 4/3 + Epsilon, and the running time O*(2 d*), where d* represents the optimal DCJ distance. For one-sided exemplar adjacency number problem, we reformulate the problem as maximum independent set in a colored interval graph and hence reduce the appearance of each gene at most twice. Moreover, we design a factor-2 approximation and also show that the approximation factor can not be improved less than 2 by some local search technique. At last, we apply integer linear programming to solve the reduced instance exactly. For the minimum copy number generation problem, we analyze the complexity of different variations of this problem and show a practical algorithm for the general case based on greedy method.Item Computational pan-genomics: algorithms and applications(Montana State University - Bozeman, College of Engineering, 2018) Cleary, Alan Michael; Chairperson, Graduate Committee: Brendan MumeyAs the cost of sequencing DNA continues to drop, the number of sequenced genomes rapidly grows. In the recent past, the cost dropped so low that it is no longer prohibitively expensive to sequence multiple genomes for the same species. This has led to a shift from the single reference genome per species paradigm to the more comprehensive pan-genomics approach, where populations of genomes from one or more species are analyzed together. The total genomic content of a population is vast, requiring algorithms for analysis that are more sophisticated and scalable than existing methods. In this dissertation, we explore new algorithms and their applications to pan-genome analysis, both at the nucleotide and genic resolutions. Specifically, we present the Approximate Frequent Subpaths and Frequented Regions problems as a means of mining syntenic blocks from pan-genomic de Bruijn graphs and provide efficient algorithms for mining these structures. We then explore a variety of analyses that mining synteny blocks from pan-genomic data enables, including meaningful visualization, genome classification, and multidimensional-scaling. We also present a novel interactive data mining tool for pan-genome analysis -- the Genome Context Viewer -- which allows users to explore pan-genomic data distributed across a heterogeneous set of data providers by using gene family annotations as a unit of search and comparison. Using this approach, the tool is able to perform traditionally cumbersome analyses on-demand in a federated manner.Item Trust assessment in online social networks(Montana State University - Bozeman, College of Engineering, 2017) Liu, Guangchi; Chairperson, Graduate Committee: Qing YangAssessing trust in online social networks (OSNs) is critical for many applications such as online marketing and network security. It is a challenging problem, however, due to the difficulties of handling complex social network topologies and conducting accurate assessment in these topologies. To address these challenges, we model trust by proposing the three-valued subjective logic (3VSL) model. 3VSL properly models the uncertainties that exist in trust, thus is able to compute trust in arbitrary graphs. We theoretically prove the capability of 3VSL based on the Dirichlet-Categorical (DC) distribution and its correctness in arbitrary OSN topologies. Based on the 3VSL model, we further design the AssessTrust (AT) algorithm to accurately compute the trust between any two users connected in an OSN. AT is able to accurately conduct one-to-one trustworthiness, however, it is inefficient in addressing the massive trust assessment (MTA) problem, i.e., computing one-to-many trustworthiness in OSNs. MTA plays a vital role in OSNs, e.g., identifying trustworthy opinions in a crowdsourcing system. If the AssessTrust algorithm is applied directly to solve the MTA problem, its time complexity is exponential. To efficiently address MTA, we propose the OpinionWalk algorithm that yields an polynomial-time complexity. OpinionWalk uses a matrix to represent a social network's topology and a vector to store the trustworthiness of all users in the network. The vector is iteratively updated when the algorithm 'walks' through the entire network. To validate the 3VSL model, we first conduct a numerical analysis. An online survey system is then implemented to validate the correctness and accuracy of 3VSL in the real world. Finally, we validate 3VSL against two real-world OSN datasets: Advogato and Pretty Good Privacy (PGP). Experimental results indicate that 3VSL can accurately model the trust between any pair of indirectly connected users in the Advogato and PGP. To evaluate the performance of the AssessTrust and OpinionWalk algorithms, we use the same datasets. Compared to the state-of-art solutions, e.g., EigenTrust and MoleTrust, OpinionWalk yields the same order of time complexity and a higher accuracy in trust assessment.