Theses and Dissertations at Montana State University (MSU)
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/733
Browse
2 results
Search Results
Item In-nii (Bison bison L.) reintroduction to Amskapiipikini (Blackfeet) Nation homeland: relationships with ksahko (soils)(Montana State University - Bozeman, College of Agriculture, 2022) Tatsey, Latrice Dawn; Chairperson, Graduate Committee: Anthony HartshornIn-nii (American Bison) are returning to their Traditional Territories after being nearly wiped out of the Great Plains of North America and Canada. The in-nii are slowly returning to Native American tribes who have the resources to run reintroduction programs like that of the Amskapiipikini (Blackfeet). This in-nii reintroduction presented an opportunity to look at the effects of the return of in-nii to the Amskapiipikini, and what their influences might be on the soils, plants, and water resources of the Blackfeet Nation. This research project was conducted on the Blackfeet Buffalo (In-nii) Ranch and the adjacent RRJ Cattle Ranch, comparing the influence of in-nii and cattle on soil nutrient cycles and soil carbon dynamics. Soil samples were taken from locations on the landscape that were near water sources on lower elevations, mid hillslopes for mid-elevation sites and on hilltops at higher elevations. Soil characteristics included soil organic matter (SOM), nitrate, pH, cation exchange capacity (CEC), and exchangeable calcium, potassium, sodium, and magnesium. Only two (CEC, magnesium) appeared to have been influenced by in-nii and cattle. The remaining soil characteristics were little influenced by grazer type. Substrate-induced respiration was also measured in the lab to see how microbes decomposed SOM (carbohydrates and other molecules) to release energy and CO2; we found no evidence of differences between in-nii- and cattle-influenced soils. Finally, we measured field respiration rates and water infiltration rates at multiple fence line sites; field soil respiration rates increased when soil had water infiltrated after the dry readings, soils also increased the time to absorb water after the first infiltration tests were run. Our preliminary results suggest that the reintroduction of in-nii to these lands has not yet resulted in measurable differences in soil-related properties of the Blackfeet Nation. Even so, the return of the in-nii for the Amskapiipikini is also about understanding the importance of using cultural science when studying the ecology of a system. Doing this can create an understanding of the traditional ways of knowing while bringing cultural healing and restoring connections between Amskapiipikini, in-nii, and land.Item Measuring methane emissions from American bison (Bison bison L.) using eddy covariance(Montana State University - Bozeman, College of Agriculture, 2019) Cook, Adam Anderson; Chairperson, Graduate Committee: Paul C. StoyAmerican bison (Bison bison L.) have recovered from the brink of extinction over the past century. Bison offer potential environmental benefits as they re-occupy their native range, but many specific impacts of bison reintroduction are not well understood. Methane emissions are known to be a major climate impact of ruminants, but few measurements for bison exist due to challenges caused by their mobile grazing habits and safety issues associated with direct measurements. Here, we measure the methane and carbon dioxide fluxes from a bison herd on winter range using the eddy covariance technique. Methane emissions were negligible (mean = 0.0024 micromole m -2 s -1, SD = 0.0102 micromole m -2 s -1) before and after bison grazed in the area sampled by the eddy covariance flux footprint with the exception of a single spike possibly attributable to thawing soil or the presence of white-tailed deer (Odocoileus virginianus Z.). Methane fluxes when bison were present in the study area averaged 0.041 micromole m -2 s -1 (SD = 0.046 micromole m -2 s -1), similar to previous measurements over sheep and cattle pastures, but with little diurnal pattern due to a lack of consistent bison movement habits over the course of each day. An eddy covariance flux footprint analysis coupled to bison location estimates from automated camera images calculated methane flux with a median of 56.5 micromole s -1 per animal and a mean of 91.6 micromole s-1 per animal, approximately 50 and 75% of established emission rates for range cattle, respectively. Eddy covariance measurements are a promising way to measure methane and carbon dioxide flux from large ruminants on native range and we recommend comparisons amongst alternate grazing systems to help identify management strategies that are cognizant of climate.