Theses and Dissertations at Montana State University (MSU)

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/733

Browse

Search Results

Now showing 1 - 10 of 13
  • Thumbnail Image
    Item
    Blackfoot traditional knowledge, bison drive lines, and geospatial analysis
    (Montana State University - Bozeman, College of Letters & Science, 2024) Edmo, Kendall Rae; Chairperson, Graduate Committee: David B. McWethy; This is a manuscript style paper that includes co-authored chapters.
    Bison drive lines provide material evidence of ancestral Blackfoot practices. The spatial dimensions of drive lines highlight a sophisticated understanding of bison-environment interactions and the strategic use of geographic landforms and environmental features to maintain a critical lifeway. Here we examine broad-scale landscape use patterns among prehistoric Blackfoot bison hunters on the Northwestern Plains through an analysis of a network of drive lines in traditional Blackfoot territory (US) using Geographic Information Systems (GIS) and previous archaeological and anthropological research. The findings of this study show that ancestral Blackfoot designed bison drive lines to be positioned in proximity to key landscape resources including water, forested areas, and wetlands and kettle lakes. This study builds on previous research that applies an Indigenous archaeological framework that incorporates ethnohistoric narratives and traditional knowledge to provide important context for understanding the relationship between ancestral Blackfoot, bison, and the cultural landscape. Examining the relationship between drive lines and landscape features helps advance our understanding of the Blackfoot knowledge system that has adapted and endured for millennia.
  • Thumbnail Image
    Item
    In-nii (Bison bison L.) reintroduction to Amskapiipikini (Blackfeet) Nation homeland: relationships with ksahko (soils)
    (Montana State University - Bozeman, College of Agriculture, 2022) Tatsey, Latrice Dawn; Chairperson, Graduate Committee: Anthony Hartshorn
    In-nii (American Bison) are returning to their Traditional Territories after being nearly wiped out of the Great Plains of North America and Canada. The in-nii are slowly returning to Native American tribes who have the resources to run reintroduction programs like that of the Amskapiipikini (Blackfeet). This in-nii reintroduction presented an opportunity to look at the effects of the return of in-nii to the Amskapiipikini, and what their influences might be on the soils, plants, and water resources of the Blackfeet Nation. This research project was conducted on the Blackfeet Buffalo (In-nii) Ranch and the adjacent RRJ Cattle Ranch, comparing the influence of in-nii and cattle on soil nutrient cycles and soil carbon dynamics. Soil samples were taken from locations on the landscape that were near water sources on lower elevations, mid hillslopes for mid-elevation sites and on hilltops at higher elevations. Soil characteristics included soil organic matter (SOM), nitrate, pH, cation exchange capacity (CEC), and exchangeable calcium, potassium, sodium, and magnesium. Only two (CEC, magnesium) appeared to have been influenced by in-nii and cattle. The remaining soil characteristics were little influenced by grazer type. Substrate-induced respiration was also measured in the lab to see how microbes decomposed SOM (carbohydrates and other molecules) to release energy and CO2; we found no evidence of differences between in-nii- and cattle-influenced soils. Finally, we measured field respiration rates and water infiltration rates at multiple fence line sites; field soil respiration rates increased when soil had water infiltrated after the dry readings, soils also increased the time to absorb water after the first infiltration tests were run. Our preliminary results suggest that the reintroduction of in-nii to these lands has not yet resulted in measurable differences in soil-related properties of the Blackfeet Nation. Even so, the return of the in-nii for the Amskapiipikini is also about understanding the importance of using cultural science when studying the ecology of a system. Doing this can create an understanding of the traditional ways of knowing while bringing cultural healing and restoring connections between Amskapiipikini, in-nii, and land.
  • Thumbnail Image
    Item
    Measuring methane emissions from American bison (Bison bison L.) using eddy covariance
    (Montana State University - Bozeman, College of Agriculture, 2019) Cook, Adam Anderson; Chairperson, Graduate Committee: Paul C. Stoy
    American bison (Bison bison L.) have recovered from the brink of extinction over the past century. Bison offer potential environmental benefits as they re-occupy their native range, but many specific impacts of bison reintroduction are not well understood. Methane emissions are known to be a major climate impact of ruminants, but few measurements for bison exist due to challenges caused by their mobile grazing habits and safety issues associated with direct measurements. Here, we measure the methane and carbon dioxide fluxes from a bison herd on winter range using the eddy covariance technique. Methane emissions were negligible (mean = 0.0024 micromole m -2 s -1, SD = 0.0102 micromole m -2 s -1) before and after bison grazed in the area sampled by the eddy covariance flux footprint with the exception of a single spike possibly attributable to thawing soil or the presence of white-tailed deer (Odocoileus virginianus Z.). Methane fluxes when bison were present in the study area averaged 0.041 micromole m -2 s -1 (SD = 0.046 micromole m -2 s -1), similar to previous measurements over sheep and cattle pastures, but with little diurnal pattern due to a lack of consistent bison movement habits over the course of each day. An eddy covariance flux footprint analysis coupled to bison location estimates from automated camera images calculated methane flux with a median of 56.5 micromole s -1 per animal and a mean of 91.6 micromole s-1 per animal, approximately 50 and 75% of established emission rates for range cattle, respectively. Eddy covariance measurements are a promising way to measure methane and carbon dioxide flux from large ruminants on native range and we recommend comparisons amongst alternate grazing systems to help identify management strategies that are cognizant of climate.
  • Thumbnail Image
    Item
    Habitat use and distribution of bison in Theodore Roosevelt National Park
    (Montana State University - Bozeman, College of Agriculture, 1984) Norland, Jack Eugene
  • Thumbnail Image
    Item
    Ecological effects of winter road grooming on bison in Yellowstone National Park
    (Montana State University - Bozeman, College of Letters & Science, 2000) Bjornlie, Daniel David
  • Thumbnail Image
    Item
    Aerial survey methodology for bison population estimation in Yellowstone National Park
    (Montana State University - Bozeman, College of Letters & Science, 2002) Hess, Steven Craig
  • Thumbnail Image
    Item
    Winter wolf predation in an elk-bison system in Yellowstone National Park, Wyoming
    (Montana State University - Bozeman, College of Letters & Science, 2001) Jaffe, Rosemary
  • Thumbnail Image
    Item
    Utilization of forage by bison in the Gibbon, Madison, and Firehole areas of Yellowstone National Park
    (Montana State University - Bozeman, College of Letters & Science, 1998) Dawes, Steven Ray
  • Thumbnail Image
    Item
    GIS modeling of bison habitat in southwestern Montana : a study in ranch management and conservation
    (Montana State University - Bozeman, College of Letters & Science, 2000) Phillips, Linda Bowers
  • Thumbnail Image
    Item
    An assessment of the risk of inter-specific transmission of Brucella abortus from bison to elk on the Madison-Firehole winter range
    (Montana State University - Bozeman, College of Letters & Science, 1999) Ferrari, Matthew Joseph
Copyright (c) 2002-2022, LYRASIS. All rights reserved.