Theses and Dissertations at Montana State University (MSU)
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/733
Browse
17 results
Search Results
Item Out-migration dynamics of juvenile adfluvial bull trout in tributaries to the lower Clark Fork River, Montana(Montana State University - Bozeman, College of Letters & Science, 2021) Lewis, Madeline Collier; Chairperson, Graduate Committee: Christopher S. Guy; Christopher S. Guy, Eric W. Oldenburg and Thomas E. McMahon were co-authors of the article, 'Demographic characteristics and distribution of juvenile adfluvial bull trout at the tributary scale' submitted to the journal 'Transactions of the American Fisheries Society' which is contained within this thesis.; Christopher S. Guy, Eric W. Oldenburg and Thomas E. McMahon were co-authors of the article, 'Seasonal capture efficiencies influences knowledge of underlying out-migration dynamics in bull trout populations with juvenile downstream trap-and-haul programs' submitted to the journal 'North American journal of fisheries management' which is contained within this thesis.; Christopher S. Guy, Eric W. Oldenburg and Thomas E. McMahon were co-authors of the article, 'Individual characteristics and abiotic factors influence outmigration dynamics of juvenile bull trout' submitted to the journal 'Canadian journal of fisheries and aquatic sciences' which is contained within this thesis.In the lower Clark Fork River, Montana, a two-way trap-and-haul program is implemented to conserve the adfluvial life-history strategy in Bull Trout Salvelinus confluentus populations in the presence of hydropower dams. We used the infrastructure in place for the program, including a permanent weir trap and multiple stationary PIT antennas, to evaluate the demographic characteristics and out-migration dynamics of juvenile bull trout, and assess the efficacy of the downstream trapping component of the trap-and-haul program. We PIT-tagged 821 juvenile Bull Trout in Graves Creek, and 144 Bull Trout in East Fork Bull River in the summer of 2019 and summer of 2020. Bull Trout in Graves Creek were primarily age 1 and age 2, with a small number of age-3 Bull Trout present (< 1%). In East Fork Bull River, age-3 Bull Trout represented 14% - 46% of the population, with a small number of age-4 and older Bull Trout present (4% - 6%). From July 2019 through December 2020, 308 tagged Bull Trout outmigrated from Graves Creek, and most out-migrants were age 2 (n = 221). In East Fork Bull River, 18 Bull Trout out-migrated, and most out-migrants were age 3 (n = 13). Capture efficiency of the permanent weir in Graves Creek varied from 83% to 100% in autumn 2019 and 2020 and was substantially lower in the spring (14%). The majority of Bull Trout out-migrated from Graves Creek during autumn 2019, spring 2020, or autumn 2020 trapping seasons (n = 276). In Graves Creek, the largest Bull Trout within the 2018 year-class were five times more likely to out-migrate at age 1 when compared to smaller fish within the cohort. The magnitude of age-1 out-migration was positively related to density. Relative changes in abiotic factors, including discharge, water temperature, and photoperiod, were cues to out-migration, and the direction of change varied by season. Understanding the demographic characteristics and outmigration dynamics of the Bull Trout in Graves Creek and East Fork Bull River enables more informed management of the trap-and-haul program and can be used to inform conservation efforts of other migratory Bull Trout populations.Item Spatial ecology of mountain ungulates in the northern Rocky Mountains: range expansion, habitat characteristics, niche overlap, and migratory diversity(Montana State University - Bozeman, College of Letters & Science, 2018) Lowrey, Blake Henson; Chairperson, Graduate Committee: Robert A. Garrott; Robert A. Garrott, Hollie M. Miyasaki, Gary Fralick and Sarah R. Dewey were co-authors of the article, 'Seasonal resource selection by introduced mountain goats in the southwest greater Yellowstone area' in the journal 'Ecosphere' which is contained within this thesis.; Robert A. Garrott, Doug E. McWhirter, P.J. White, Nicholas J. DeCesare and Shawn T. Stewart were co-authors of the article, 'Niche similarities among introduced and native mountain ungulates' in the journal 'Ecological applications' which is contained within this thesis.; Kelly M. Proffitt, Douglas E. McWhirter, P. J. White, Alyson B. Courtemanch, Sarah R. Dewey, Hollie M. Miyasaki, Kevin L. Monteith, Julie S. Mao, Jamin L. Grigg, Carson J. Butler, Ethan S. Lula and Robert A. Garrott were co-authors of the article, 'Contrasting seasonal movements in native and restored populations: a case for conserving migratory portfolios' submitted to the journal 'Journal of applied ecology' which is contained within this thesis.; Douglas E. McWhirter, Kelly M. Proffitt, Alyson B. Courtemanch, Kevin L. Monteith, P. J. White, J. Terrill Paterson, Sarah R. Dewey and Robert A. Garrott were co-authors of the article, 'Individual variation creates diverse portfolios of seasonal movement patterns and ranges in a migratory ungulate' submitted to the journal 'Ecology' which is contained within this thesis.Mountain ungulates, although recognized as iconic and charismatic wildlife species, are the least studied and understood large mammals in western North America. The paucity of data, specifically concerning spatial ecology, presents a formidable challenge to regional wildlife managers tasked with the responsibility of managing populations with limited empirical studies on which to base decisions. We used GPS data collected from bighorn sheep (Ovis canadensis) and mountain goats (Oreamnos americanus) sampled from multiple populations throughout the northern Rocky Mountains to develop comparative studies characterizing seasonal habitats and potential range expansion of introduced mountain goats, niche overlap with native bighorn sheep, and migratory diversity of restored, augmented, and native bighorn sheep. Slope was the dominant predictor of mountain goat habitat use in both seasons, although mountain goats selected for steeper slopes in winter than in summer. Regional extrapolations depicted suitable mountain goat habitat in the Snake River, Teton, Gros Ventre, Wyoming and Salt Ranges centered around steep and rugged areas. Although bighorn sheep occurred on steeper slopes than mountain goats in summer and mountain goats occurred on steeper slopes in winter, we observed broad niche overlap according to season-species niche models and observed GPS locations where the two species were sympatric. In native bighorn sheep herds, we observed longer migrations on average and significantly more variation among individuals when compared to restored herds. The enhanced individual variation in native herds resulted in diverse portfolios of migratory behaviors and ranges, including newly documented high elevation long-distance migrants, increased switching rates between migratory behaviors, and sub-populations that were diffusely spread across both summer and winter ranges. In contrast, restored herds had limited individual variation, were largely non-migratory, had less switching between years, and were generally concentrated on both summer and winter ranges. In addition to increasing the abundance and distribution of bighorn sheep on the landscape, we suggest there may be value in simultaneously increasing the diversity of seasonal movement strategies, and in so doing, building resilience to future perturbations and disease, and mirroring the movement portfolios observed in native populations of bighorn sheep.Item Subadult bull trout out-migration in the Thompson River drainage, Montana(Montana State University - Bozeman, College of Letters & Science, 2017) Glaid, Jeffrey Robert; Chairperson, Graduate Committee: Christopher S. GuyBull Trout populations in the Thompson River drainage have declined over the past century. Declines have been attributed to habitat fragmentation, habitat degradation, and non-native species. Out-migration characteristics (e.g., temporal and spatial origins, abiotic cues, and movement) of subadult Bull Trout (100 - 300 mm TL) were evaluated throughout the drainage to increase our understanding of local populations and better inform conservation efforts. In autumn 2014, 53 subadult Bull Trout were tagged with passive integrated transponder (PIT) tags; 29 were also surgically implanted with acoustic transmitters. Minimal Bull Trout out-migration (N = 7) was observed in 2014. In summer 2015, 566 subadult Bull Trout were PIT-tagged in the Fishtrap Creek and West Fork Thompson River drainages (Thompson River tributaries). Stream-width PIT antennas were used to monitor out-migration at the confluences of the Thompson River tributaries and at the mouth of the Thompson River. Out-migrating Bull Trout (N = 135) were sampled using directional weir traps at the tributary confluences, PIT-tagged, and implanted with acoustic- (N = 29) or radio-tags (N = 14) in autumn 2015. From July through December 2015, 10.1% of all PIT-tagged Bull Trout out-migrated from the Thompson River tributaries (11.4% of fish in the Fishtrap Creek drainage [N = 420] and 6.2% of fish in West Fork Thompson River [N = 146]), with peak out-migration occurring in late October. Highest predicted probabilities of Bull Trout out-migration occurred at lengths of 179 mm in Fishtrap Creek (30.4%) and 165 mm in West Fork Thompson River (29.3%). Only 13.5% of all Bull Trout that entered the Thompson River (N = 192) entered Thompson Falls Reservoir, with peak out-migration occurring in December. Median daily water temperature, minimum daily atmospheric pressure, and lunar illumination were weakly associated with an increase in the number of out-migrants. Radio-tagged out-migrants were randomly distributed throughout the Thompson River and exhibited long periods of site fidelity between intermittent downstream movements. Bull Trout demonstrated low out-migration rates in the Thompson River drainage and prolonged habitation of the mainstem Thompson River, which was contrary to the a priori hypothesis of clustered out-migration by subadult Bull Trout.Item Evaluation of the potential for 'resident' bull trout to reestablish the migratory life-form(Montana State University - Bozeman, College of Letters & Science, 1999) Nelson, M. LeeItem An evaluation of Yellowstone cutthroat trout fry recruitment related to water leases on four tributaries of the Yellowstone River(Montana State University - Bozeman, College of Letters & Science, 1998) Hennessey, Leanne ElizabethItem Migratory chronology of adult tiger salamanders (Ambystoma tigrinum) and survey of larvae of the tiger salamander in the northern range of Yellowstone National Park(Montana State University - Bozeman, College of Letters & Science, 1995) Hill, Steven RalphItem Run timing and spawning distribution of coho salmon (Oncorhynchus kisutch) in the Kenai River, Alaska and their relation to harvest strategies(Montana State University - Bozeman, College of Letters & Science, 1990) Booth, Jeffrey AllanItem Abilities of trout to swim through highway culverts(Montana State University - Bozeman, College of Letters & Science, 1986) Belford, David AndrewItem Yearlong movements and habitat use of mule deer associated with the Willow Creek winter range in southeastern Idaho(Montana State University - Bozeman, College of Letters & Science, 1987) Thomas, Terry RossItem Bald eagles of the San Luis Valley, Colorado : their winter ecology and spring migration(Montana State University - Bozeman, College of Letters & Science, 1984) Harmata, Alan R.