Theses and Dissertations at Montana State University (MSU)

Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/733

Browse

Search Results

Now showing 1 - 7 of 7
  • Thumbnail Image
    Item
    Effect of process variables on the uncured handleability and formability of stretch broken carbon fiber
    (Montana State University - Bozeman, The Graduate School, 2022) Rezaul, Riad Morshed; Chairperson, Graduate Committee: Cecily A. Ryan
    Carbon fiber is a high-performance reinforcing material used extensively in aerospace composites. Although carbon fiber is used in both continuous and discontinuous form, the continuous carbon fiber is limited by its inability to stretch due to its low strain to failure during manufacturing structures with complex geometries. Stretch broken carbon fiber (SBCF) is a type of discontinuous and aligned carbon fiber which has the potential to solve this limitation of inextensibility of its continuous counterpart. The discontinuous nature of SBCF enhances its stretchability making this material a prime candidate for manufacturing parts with complex curvatures. SBCF is generated by stretching the fibers using a pair of differentially driven rollers, which breaks the fibers at their intrinsic flaws. Although SBCF can be stretched due to being discontinuous, it compromises the tensile strength due to the lack of fiber continuity. Therefore, a polymeric coating known as sizing is applied to the SBCF to reconstruct its tensile strength. In the context of SBCF production, sizing serves two important functions. Firstly, sizing provides uncured carbon fiber the desired handleability and back-tension ability. Secondly, sizing enhances the formability of SBCF, which is a defined as the ease at which a material can be formed into a desired shape without failure. The goal of this work is to investigate the effect of process variables on the generation of stretch broken carbon fiber with consistent and repeatable material properties. The stretch broken carbon fiber research group at Montana State University (MSU) has developed a stretch breaking machine known as 'Bobcat' to generate single tow MSU SBCF. The noteworthy process variables related to MSU SBCF production includes sizing deposition on the tow, stretch ratio, nip force, line speed, fiber length distribution, and tow tenacity. Target amount of sizing deposition on MSU SBCF tow was achieved by choosing an appropriate sizing bath. A temperature-controlled tow tenacity result suggests that MSU SBCF possesses adequate handleability, back-tension ability and formability. MSU SBCF also shows a narrow fiber length distribution and relatively short mean fiber length which indicate improved formability. Reproducibility of these results were observed in the replicate batches of MSU SBCF. Suitable stretch ratio and nip force regimes were identified to optimize MSU SBCF production.
  • Thumbnail Image
    Item
    Fiber shape effects on the compressive strength of unidirectional carbon fiber composites: a computational study
    (Montana State University - Bozeman, College of Engineering, 2020) Clarke, Ryan; Chairperson, Graduate Committee: David A. Miller
    The tensile strength tends to be much higher than the compressive strength for carbon fiber reinforced polymer composites because of a change in failure modes. Current research activities are looking at novel precursors for reducing overall costs of carbon fiber production. The potential cost savings in new precursor carbon fiber make it economically feasible to use in large structural components. Some fiber precursors and manufacturing methods produce carbon fibers that have a kidney-shaped cross-section whereas traditional carbon fiber is circular. The aim of this study is to investigate the differences in compressive failure responses between fiber shapes in carbon fiber composites. A finite element micromechanical model was developed in ABAQUS of a single carbon fiber embedded in a square matrix with periodic boundary conditions. Two fiber cross-sectional geometries were examined: circular and kidney shaped. Three factors that affect the compressive failure response of carbon fiber reinforced polymers were investigated. These include fiber misalignment, volume fraction, and multiaxial loading. The results showed negligible differences between the compressive failure response of fibers with different cross-sectional shapes. Compressive strength was shown to have a decaying sensitivity to increasing fiber misalignment. Decreasing the volume fraction did decrease the compressive strength but also increased the compressive failure strain. In addition, adding in-plane shear loads proved detrimental to the compressive load-carrying capacity of a composite structure. This research showed minimizing fiber misalignment in manufacturing processes is only beneficial for high tolerance processes. In addition, decreasing volume fraction could be beneficial for highly flexible structures. Finally, the results demonstrated the need to minimize multiaxial loading for optimal composite compressive response.
  • Thumbnail Image
    Item
    Fabrication and assessment of anode supported SOFCS doped with aluminum titanate via electrochemical and non-destructive micro-indentation testing
    (Montana State University - Bozeman, College of Engineering, 2019) Kent, John Parker; Chairperson, Graduate Committee: Stephen W. Sofie
    Ceramic-metal (cermet) composites are the most promising electrochemical anodes for commercial implementation in solid oxide fuel cells (SOFC). Recent advances at MSU in cermet formulations utilizing aluminum titanate (ALT) dopants in nickel oxide (NiO)-yttria stabilized zirconia (YSZ) anodes has shown substantial performance gains in degradation rates as well as mechanical behavior when evaluated in low power density electrolyte supported cell (ESC) geometries and bulk anode forms through modulus of rupture and equibiaxial flexure. The benefits associated with ALT are due to the formation of secondary phases of nickel aluminate and zirconium titanate in NiO-YSZ cermets that form during processing. Cermet modulus of rupture studies are rigorous, can span multiple months, and requiring hundreds of samples when studying the effects of both thermal and redox cycling on SOFC anodes to achieve statistically significant results. The use of non-destructive methods such as micro-indentation to examine the strength and toughness of doped and differently processed cermet anodes can rapidly speed up the analysis of mechanical properties including the mechanical support characteristics of higher power density anode supported cell (ASC) geometries targeted by industrial SOFC developers. The aim of this study was to examine non-destructive micro-indentation testing in evaluating cermet anode materials in both oxidized and reduced state in direct contrast with traditional destructive methods. Extending the current state of ALT anode doping by utilizing these rapid assessment methods, this work examines mechanical properties degradation and fracture toughness under multiple thermal and redox cycles. Additionally, this work details the framework for cell fabrication methods that were developed to process ASCs with state of the art 5 micrometer electrolytes for the first evaluation of ALT doping of SOFCs in this high power cell configuration.
  • Thumbnail Image
    Item
    Development of non-proprietary ultra high performance concrete
    (Montana State University - Bozeman, College of Engineering, 2017) Snidarich, Richard Allen, Jr.; Chairperson, Graduate Committee: Michael Berry
    Ultra-high performance concrete (UHPC) has mechanical and durability properties that far exceed those of conventional concrete. Particularly, UHPC has compressive and post-cracking tensile strengths of around 20 ksi and 0.72 ksi, respectively. Thus, elements made with UHPC are thinner/lighter than elements made with conventional concrete. The enhanced durability properties of UHPC also allow for longer service lives and decreased maintenance costs. However, using UHPC in conventional concrete applications has been cost prohibitive, with commercially available/proprietary mixes costing over 10 times conventional concrete mixes. The overall objective of this research was to develop and characterize economical non-proprietary UHPC mixes made with materials readily available in Montana. This objective was achieved by first identifying and obtaining suitable/economical materials to be used in UHPC. Specifically, the materials identified and used in this research were simply Type I/II portland cement, class F fly ash, fine masonry sand, silica fume, and high range water reducer. UHPC mixes were then developed/characterized/optimized by using a statistical experimental design procedure (response surface methodology). The mixes developed as part of this research obtained compressive strengths of approximately 20 ksi with flows of 11 inches, and costs of $300 per cubic yard (excluding freight of materials).
  • Thumbnail Image
    Item
    Analysis for three-dimensional pipe structures by group relaxation
    (Montana State University - Bozeman, College of Engineering, 1949) Bassar, Nicholas
  • Thumbnail Image
    Item
    Variation of the resistance of copper with potential energy of deformation
    (Montana State University - Bozeman, College of Letters & Science, 1946) Kerttula, Walter T.
  • Thumbnail Image
    Item
    Spectrum fatigue lifetime and residual strength for fiberglass laminates
    (Montana State University - Bozeman, College of Engineering, 2001) Wahl, Neil Kelly
Copyright (c) 2002-2022, LYRASIS. All rights reserved.