Theses and Dissertations at Montana State University (MSU)
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/733
Browse
5 results
Search Results
Item Chickpea variety evaluation and intercropping for disease management and yield(Montana State University - Bozeman, College of Agriculture, 2022) Zhou, Yi; Chairperson, Graduate Committee: Chengci Chen; This is a manuscript style paper that includes co-authored chapters.Chickpea (Cicer arietinum L.) is an important food grain legume, but production is constrained by the soilborne pathogen complex, Ascochyta rabiei, and the development of fungicide resistance. Cultivar resistance is one of the most efficient strategies in disease management. However, chickpea cultivars with resistance to soilborne pathogens or complete resistance to A. rabiei have not been developed. Intercropping chickpea-flax has the potential for Ascochyta blight management. To minimize the impact of soilborne disease and Ascochyta blight on chickpea production, refining of integrated pest management practices is essential. To evaluate the effect of cultivar selection in combination with seed treatment on soilborne disease control, twenty-five cultivars/lines were planted with or without fluxapyroxad, pyraclostrobin, and metalaxyl under field conditions. The area under disease progress curve (AUDPC), seed yield, and protein content were assessed. Fusarium solani was isolated and identified in the late season, and the disease severity of root rot was evaluated. The results showed that seed treatment effectively suppressed damping-off and improved chickpea yield but only slightly reduced late-season root rot. The AUDPC of NDC160166 and NDC 160236 was not significantly reduced by seed treatment, which could be a future resource of resistance. To assess the effects of configurations and resistant cultivar on yield and Ascochyta blight management in intercropping chickpea-flax, two chickpea cultivars (CDC Leader and Royal) were planted with flax under six configurations (monocrop chickpea, 70% chickpea-30% flax in mixture, 50% chickpea-50% flax in mixture, 50% chickpea-50% flax in alternate rows, 30% chickpea-70 flax in mixture, monocrop flax). Yield and nutrient content of component crops and Ascochyta blight infection were evaluated. Chickpea yield decreased as flax proportion increased in the mixture. Chickpea yielded higher in the alternate row design than in the mixture at the same seeding rate due to less interspecies competition in the alternate rows. Intercrop increased 2%-23% land productivity. Chickpea-flax intercrop effectively reduced Ascochyta blight under higher disease pressure. The configuration of 50% chickpea and 50% flax in the mixture was more effective in suppressing Ascochyta blight than in the alternate row configuration. Integrated resistant cultivar and intercropping configuration was most effective in disease suppression.Item Management of nitrogen symbiosis and plant nitrogen nutrition of field pea (Pisum sativum) and chickpea (Cicer arietinum) with spectral reflectance(Montana State University - Bozeman, College of Agriculture, 2001) McConnell, Jody ToddItem Improvement of chickpea stand establishment in cool soils(Montana State University - Bozeman, College of Agriculture, 1987) Bollinger, Shirley AnnItem Effect of moisture stress on nodulation, growth and yield of chickpea (Cicer arietinum L.)(Montana State University - Bozeman, College of Agriculture, 1986) An, Kwang-WookItem Integrated management and causes of damping off disease of chickpea (Cicer arietinum L.) in Montana(Montana State University - Bozeman, College of Agriculture, 2008) Leisso, Rachel Sue; Chairperson, Graduate Committee: Mary Burrows.Chickpea is a minor crop in Montana with great potential for increase in both the conventional and organic sector. The semi-arid climate of much of Montana is well-suited to organic chickpea production, which commands a higher market price than conventional chickpea. Ranking third in the nation for certified organic cropland acres, many operations in Montana are already capable of organic chickpea production. There is a need for rotational crops such as chickpea that are compatible with organic wheat production. In addition to their profit potential, chickpea can perform valuable functions in wheat rotations such as fixing nitrogen and breaking insect pest and disease cycles. Damping-off of chickpea is one of the critical concerns of producers raising organic chickpea. Little was known about the pathogens causing damping off in Montana prior to this research. To determine the organisms responsible for damping off, pathogens were isolated from chickpeas affected by damping off at three field sites and identified to genera. Pythium spp. and Fusarium spp. are the predominate causes of damping off in Montana. Fusarium spp. have not been previously reported in association with damping off of chickpea. To determine if the Fusarium isolates were pathogenic or facultatively pathogenic, eight isolates of Fusarium were indentified to species and pathogenicity tests were performed under controlled conditions. All isolates caused damping off of chickpea. Damping off incidence and severity increased with increasing moisture levels for the majority of the Fusarium isolates. Seed treatments are the most common method of preventing damping off, and biological seed treatments are a control option for organic and conventional growers. The potential for control of chickpea damping off using biological and fungicide seed treatments was tested in greenhouse trials and at three field locations in Montana in 2007. Biological seed treatments Bacillus pumilus GB34 (Yield Shield), B. subtilis GB03 (Kodiak), and Trichoderma harzianum Rifai strain KRL-AG2 (T-22 Planter Box) were compared with conventional seed treatments fluidoxonil (Maxim) and mefenoxam (Apron XL LS) and combinations of biological and fungicide seed treatments in field trials. Treatments containing the chemical fungicide mefenoxam, which targets oomycete pathogens, were most effective for controlling damping off. Biological seed treatments were not effective at controlling damping off.