Theses and Dissertations at Montana State University (MSU)
Permanent URI for this collectionhttps://scholarworks.montana.edu/handle/1/733
Browse
10 results
Search Results
Item An induced acceleration analysis of the barbell back squat(Montana State University - Bozeman, College of Education, Health & Human Development, 2024) Goodman, William Wesley; Chairperson, Graduate Committee: Dawn Tarabochia; This is a manuscript style paper that includes co-authored chapters.The barbell squat exercise is performed in settings ranging from rehabilitation through to developing muscle size, strength and power. Unfortunately, the lower extremity coordination producing the squat is not clearly understood. This thesis involves three studies evaluating how lower limb joints and muscles coordinate varied squat performance. Study one-three included 13 females who performed squats at three randomized depths (above parallel, parallel, below parallel) using 85% of their 1 repetition maximum at each respective depth. In study one, performance was evaluated by estimating the individual muscle force production and the individual muscle contribution to whole body acceleration using a musculoskeletal model. In study two, performance was evaluated by estimating the individual muscle force production and the individual muscle contribution to the lower body joint accelerations using a musculoskeletal model. In study three, knee joint contact loads were estimated using an advanced musculoskeletal model. Because muscles can accelerate all joints in the body, including a joint that it does not span, musculoskeletal models are necessary to determine muscle function. Varied coordination indicates that depth and load specificity is important and should be taken into consideration when programming based on the status and goals of the individual.Item Implementation of a tummy time protocol: a quality improvement project in a level 3B NICU(Montana State University - Bozeman, College of Nursing, 2024) Chaffin, Taylor Christine; Chairperson, Graduate Committee: Benjamin J. Miller; This is a manuscript style paper that includes co-authored chapters.Background: Infants who spend prolonged periods in the supine position, particularly in the NICU, face an increased risk of plagiocephaly and developmental delays. Supine sleeping is recommended by the American Academy of Pediatrics, "Back to Sleep" campaign, which has successfully reduced sudden infant death syndrome by 40-60%. However, an increase in cranial abnormalities was observed following the widespread adoption. Daily tummy time supports motor development, reduces the risk of plagiocephaly, and promotes parental bonding. Methods: A six-week tummy time protocol was implemented in a level 3b NICU for infants who were 32 weeks corrected gestational age and medically stable. Brief 1-2-minute tummy time sessions were completed in the infant's bed or while holding with a parent. Tummy time sessions, education, and return demonstrations were documented on a bedside tracker. Pre- and post-implementation surveys were distributed to staff to gather perspectives. Parent surveys were distributed at discharge to evaluate readiness to complete tummy time at home. Results: Between January 15th and February 25th, only 23 out of 42 eligible infants had tracker sheets returned (55%). Out of 504 eligible days, tummy time sessions were recorded on 214 days, accounting for 42%. Post-implementation staff surveys showed positive results regarding their confidence in educating parents (M=4.7, sd=0.47) and the ease of implementation (M=4.38, sd=0.65). Comparing the results of the pre-and post-implementation surveys using a t-test yielded no significance. Obstacles to compliance included difficulty integrating new workflows, time constraints for education completion, tummy time, and documentation. Conclusion: Implementing the Tummy Time Protocol was crucial in changing practice patterns to align with best practices for infants admitted to the NICU. However, more work must be done to integrate tummy time sessions, early education, and documentation into a new workflow. Suggestions for improvement were provided, focusing on incorporating documentation into the electronic health record (EHR) system to improve compliance and reduce the risk of losing tracking sheets. In addition, future research is necessary to evaluate the long-term effects of tummy time implementation within the NICU. Specifically, research should focus on rates of plagiocephaly and outpatient therapy referrals following discharge from the NICU.Item The influence of external load during hiking on markers of joint stress and movement efficacy(Montana State University - Bozeman, College of Education, Health & Human Development, 2022) Rowland, Isaac Franco; Chairperson, Graduate Committee: Mary P. Miles; Mary Miles, David Graham, Ron June, Brian Bothner and Hunter Fausset were co-authors of the article, 'The influence of external load during hiking on markers of joint stress and movement efficacy' which is contained within this thesis.PURPOSE: Complications to lower extremity joints, including injury and inflammation, are prevalent issues that arise during prolonged external load-bearing exercise. Metabolomic blood analysis can provide insight into the metabolic processes that occurs during this type of exercise. METHODS: Eight healthy, active men and women participated in a series of blood sample collections and motion capture recording before and after completing a 7.2-mile hiking protocol under two separate conditions. Blood was collected prior to hiking, 15-20 minutes after hiking, 8-hours after, 24-hours after, and 48 hours after. Movement coordination and efficacy was measured with a motion capture system while performing the y-balance test and an obstacle clearance task. Hiking conditions were randomized as backpacking with 20% of body mass external load or daypacking with minimal external load for each participant and separated by two weeks. Serum was analyzed to detect differences in metabolite upregulation between conditions. Biomechanical data were analyzed for inter- and intra-differential values relevant to fatigue between conditions. RESULTS: Analysis found clear differences between conditional metabolite upregulation at all post-hike timepoints. The upregulation of cortisol was significant in backpacking conditions at the post-hike timepoint. Glycerophospholipids were significantly upregulated in backpacking at 8-hours post-hike All significant metabolite upregulation switched to daypacking conditions at 24-hours post-hike. Significant metabolite upregulation varied between conditions at 48-hours post-hike. The only findings of significance in movement coordination and efficacy were between the y-balance lateral leg movement. CONCLUSIONS: The presence of cortisol is consistent with the physiological and mental stress of external loadcarriage and alludes to exposure that can lead to decreased bone mineral content. Glycerophospholipid metabolism pathways play an important role in joint degradation, which could explain their upregulation in backpacking conditions. Ceramide, omega-3s, and fatty acid/triglyceride cycling are functions of cell proliferation and turnover which may be upregulated with more efficiency in daypacking conditions. Upregulation of anserine at 48-hours post-hike in daypacking supports the idea of more efficient exercise recovery occurring in this condition. While significant differences were not clear in motor control measures, the findings show potential reliability for future study designs.Item Improving the understanding of cognitive- motor function and lower-extremity biomechanics(Montana State University - Bozeman, College of Engineering, 2021) Fischer, Patrick David; Chairperson, Graduate Committee: Scott Monfort; Keith A. Hutchison, James N. Becker, and Scott M. Monfort were co-authors of the article, 'Evaluating the spectrum of cognitive-motor relationships during dual-task jump landing' in the journal 'Journal of applied biomechanics' which is contained within this dissertation.; Keith A. Hutchison, James N. Becker and Scott M. Monfort were co-authors of the article, 'Do dual-task demands generalize across sport-specific movements?' submitted to the journal 'Journal of applied biomechanics' which is contained within this dissertation.; Keith A. Hutchison, James N. Becker and Scott M. Monfort were co-authors of the article, 'Decoupling visual constraint from rapid decision-making effects during a jump-landing' submitted to the journal 'American journal of sports medicine' which is contained within this dissertation.Anterior cruciate ligament injuries present a considerable problem for athletic populations, especially those that engage in sports with open-skill movement demands like rapid changes of direction. These injuries typically occur in a non-contact setting, that is, the forces generated by the athlete's own movement overburden the ligaments in the knee and cause partial or total rupture of the tissue. Considerable effort has been devoted to researching and, by extension, counteracting the physical contributions to injury risk; for example, athletes are encouraged to develop better balance and lower-extremity strength to counteract the adverse effects of poor movement performance. However, anterior cruciate ligament injury risk is also tied to cognitive factors as well as physiological factors. This athlete-specific cognitive-motor relationship interacts with external distractions in the sporting environment to compromise an athlete's ability to move safely and effectively. The purpose of this research was to investigate contributions of different cognitive domains to movement performance in distracted, sport-relevant scenarios, to develop a better understanding of the cognitive-motor relationships that underpin injury rates in these athletic populations. A series of studies involving biomechanical and cognitive outcome measures demonstrated that cognitive function has an important, if not fully understood, role to play in mitigating an athlete's susceptibility to distractions during open-skill movement performance. This research adds to a critically underdeveloped body of work explaining the subject-specificity of dual-task movement performance in a lab setting and provides a foundation for developing new injury risk assessment and mitigation efforts for clinicians and coaches.Item Coordination and coordination variability during running with respect to internal loading and age(Montana State University - Bozeman, College of Education, Health & Human Development, 2021) Hoffee, Allison Jane; Chairperson, Graduate Committee: James P. Becker; David Graham, Scott Monfort and James Becker were co-authors of the article, 'Coordination variability predicts achilles tendon and peak patellofemoral loading in healthy runners' submitted to the journal 'Clinical biomechanics' which is contained within this thesis.; Scott Monfort, David Graham and James Becker were co-authors of the article, 'Comparison of coordination and coordination variability between adolescent and adult runners' submitted to the journal 'Journal of sports sciences' which is contained within this thesis.Running is a largely popular and widely accessible form of exercise. However, running may pose risks to individuals due to its associations with high rates of injuries. Coordination between lower extremity joints and segments as well as coordination variability have linked to these running injuries. While mechanisms of injury are multifactorial, one theory suggests that reduced coordination variability may cause injury by increasing cumulative loading of soft tissue structures. This relationship may be important when assessing age, as prevalence of injuries differ between adolescents and adults. Therefore, this thesis aimed to 1) assess the relationship between coordination variability and loads in the Achilles tendon and patellofemoral joint during running 2) and evaluate differences in segmental coordination and variability between adolescent and collegiate runners. In Study 1, 64 healthy, adult runners ran on an instrumented treadmill while kinematics and kinetics were recorded. Coordination variability for knee-shank, knee-rearfoot, and shank-rearfoot couplings were calculated using vector coding. Achilles tendon and patellofemoral kinetics were calculated with musculoskeletal models. Surrogate variables were created for Achilles tendon and patellofemoral metrics using principal component analyses, and regressions were used to determine whether variability metrics predicted loading surrogates. One surrogate variable was created for Achilles loading, and lower knee-rearfoot variability predicted greater Achilles loading. Two surrogate variables were created for patellofemoral loading. Lower knee-rearfoot and knee-shank variability predicted greater peak patellofemoral loading, but no variability predicted cumulative patellofemoral loading. This suggests that a combination of low variability and large loads may be important for injury risk rather than cumulative loading. Study 2 assessed 21 competitive adolescent and 21 collegiate runners. Coordination variability was calculated using vector coding for various thigh, shank, and rearfoot couplings. Coordination patterns were analyzed using a binning frequency analysis. Adolescent and collegiate runners displayed different coordination patterns while running that primarily emerged from the transverse plane. Adolescent runners displayed greater coordination variability on average than collegiate runners. Combined with previous literature, this suggests a downward trend in coordination variability starting in adolescence and continuing through adulthood. In conclusion, coordination and its variability may be consequential in terms of injury mechanisms and different age populations.Item Support moment distribution and induced acceleration analysis of the barbell back squat(Montana State University - Bozeman, College of Education, Health & Human Development, 2020) Goodman, William Wesley; Chairperson, Graduate Committee: David Graham and James P. Becker (co-chair); Victoria Flores, Joshua Cotter, David Graham and James Becker were co-authors of the article, 'Support moment distribution during the barbell back squat at different depths and loads in recreationally trained females' submitted to the journal 'Journal of strength and conditioning research' which is contained within this thesis.; James Becker and David Graham were co-authors of the article, 'An induced acceleration analysis of the barbell back squat at different depths in trained females' submitted to the journal 'Journal of strength and conditioning research' which is contained within this thesis.The barbell squat exercise is performed in settings ranging from rehabilitation through to developing muscle size, strength and power. Unfortunately, the lower extremity coordination producing the squat is not clearly understood. This thesis involves two studies evaluating how lower limb joints and muscles coordinate varied squat performance. Study one included 19 females who performed squats at three randomized depths (above parallel, parallel, below parallel) and three loads (unloaded, 50%, 85% 1 repetition maximum). Inverse dynamics analysis revealed that peak hip and ankle extensor moments varied with load but not depth and were greatest when using 85% 1 repetition maximum. Within each depth, as load increased so did peak knee extensor moments. Peak knee extensor moments were greatest when squatting below parallel with load. Within each depth as load increased contribution of the hip increased whereas the knee decreased. Ankle contribution was only influenced by load. When squatting to deep depths with load, the contribution of the hip decreased while the knee increased. In study two, 13 females squatted to the same 3 depths using 85% of their 1 repetition maximum at each respective depth. Performance was evaluated by estimating the individual muscle force production and the individual muscle contribution to whole body acceleration using a musculoskeletal model. The gluteus maximus and adductors increased peak force to parallel while the hamstrings and rectus femoris increased to below parallel. At deep depths, the vasti decreased peak force while the hamstrings and rectus femoris increased peak force. The induced acceleration of the vasti at transition decreased with depth while the hamstrings and rectus femoris increased. Because muscles can instantaneously accelerate all joints in the body, it's possible that at transition the hamstrings accelerated the hip and knee into extension while the rectus femoris also accelerated the knee and hip into extension while the soleus accelerated the ankle and knee into extension. In conclusion, a complex coordination of the lower extremity is used performing the squat. Varied coordination indicates that depth and load specificity is important and should be taken into consideration when programming based on the status and goals of the individual.Item Qualitative comparison of basic movement patterns of preschool age children(Montana State University - Bozeman, College of Education, Health & Human Development, 1980) Tubbs, Virginia DawnItem Self-concept and gross motor development in kindergarten children(Montana State University - Bozeman, College of Education, Health & Human Development, 1979) Sorensen, Kathleen EstherItem Theoretical mechanisms and processes underlying motor skill acquisition(Montana State University - Bozeman, College of Letters & Science, 1976) Dorfman, Sharon BrooksItem The effect of ball color and background color on the striking performance of 1st, 3rd, and 5th graders(Montana State University - Bozeman, College of Education, Health & Human Development, 1980) Alomar, Patricia Teutschman