Theses and Dissertations at Montana State University (MSU)

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/732

Browse

Search Results

Now showing 1 - 1 of 1
  • Thumbnail Image
    Item
    Understanding mechanisms of invasion and restoring lands impacted by non-native annual grasses
    (Montana State University - Bozeman, College of Agriculture, 2020) Majeski, Michelle Lynn; Chairperson, Graduate Committee: Jane M. Mangold; Catherine Zabinski, Lisa J. Rew and Jane Mangold were co-authors of the article, 'Ventenata dubia growth responds to field soil inocolum but not phosphorous and potassium treatments' which is contained within this thesis.; Catherine Zabinski, Lisa J. Rew and Jane Mangold were co-authors of the article, 'Ventenata dubia was associated with perennial grasses, bare ground and soil potassium concentration' which is contained within this thesis.; Stacy C. Simanonok, Zach Miller, Lisa J. Rew and Jane Mangold were co-authors of the article, 'Spring seeding provides a seasonal priority effect for Pseudoroegneria spicata in Bromus tectorum-invaded rangelands' which is contained within this thesis.
    European settlement and development of rangelands in the western U.S. has led to a shift in vegetation from native species to introduced species, some of which have become weedy and invasive. Effects of invasive plant species can vary but often include replacing native vegetation, altering ecosystems, affecting wildlife that relied on the native plants for food and shelter, and toxicity to livestock. Two introduced annual grasses of concern are Ventenata dubia and Bromus tectorum. These grasses are at different stages in their invasion in the western U.S. Ventenata dubia is a recent invasive species in the past ten years and B. tectorum has been dominant in the Intermountain West since the mid-1900s. Three independent studies were conducted to understand characteristics of V. dubia invasion and to test whether a seasonal priority effect could be shifted to Pseudoroegneria spicata to outcompete B. tectorum in range/pasturelands. A full-factorial design was executed in a greenhouse setting to examine if a plant-soil feedback contributes to V. dubia invasion and if V. dubia preferred specific nutrients for growth. Ventenata dubia biomass, shoot height and number of leaves and tillers (per plant) were higher when grown with field soil inoculum compared to sterilized greenhouse soil. Ventenata dubia growth varied among nutrient treatments, but trended higher with a full nutrient solution. A nested observational study was conducted to examine abiotic and biotic characteristics associated with V. dubia infestations. Ventenata dubia was positively associated with non-native perennial grasses and negatively associated with native perennial grasses, bare ground/rock and soil potassium concentration. A randomized split-plot design was performed in B. tectorum-infested range and pasturelands to test whether timing of herbicide application and seeding of P. spicata could create a seasonal priority effect for P. spicata. Bromus tectorum had lower cover and biomass (per m2) with spring herbicide application. Higher P. spicata density, cover and biomass resulted with spring seeding after B. tectorum was reduced. These studies show that established and seeded native perennial grasses can compete with nonnative, invasive annual grasses. When existing management tools (herbicide and revegetation) are applied in a different way, native perennial grasses benefit.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.