Theses and Dissertations at Montana State University (MSU)
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/732
Browse
2 results
Search Results
Item Aphanomyces euteiches spatial distribution, host studies, and characterization in Montana(Montana State University - Bozeman, College of Agriculture, 2022) Murphy, Carmen Yvette; Chairperson, Graduate Committee: Mary BurrowsGrowing pulse crops in Montana has been inhibited by biotic constraints to production, including a complex of pathogens causing root rot. Aphanomyces root rot, caused by the soilborne oomycete, Aphanomyces euteiches, causes plant stunting and yellowing, root browning and constriction, and reduces yield in dry pea and lentil in the state. Twelve fields with a history of pulse root rot were sampled in northeast Montana with three 100 m entrance transects and one 50 m transect at a low spot or problem area. Soil from each 10 m quadrat within transects was assessed for root rot using a greenhouse bioassay with a susceptible dry pea variety, and with PCR. Samples were also analyzed for soil properties and nutrients. Distribution of the pathogen was sporadic in most fields, except for fields that had been growing pulses in a consistent rotation, where root rot severity was high and consistent. Soil pH, organic matter, potassium, and sulfur concentration were correlated with Aphanomyces root rot, and isolates varied in their response to acidic pH in vitro. Using a highly virulent A. euteiches isolate, greenhouse trials were conducted to assess the pathogen load of inoculated soil after growing host and non-host plant species, measured with a bioassay. Greenhouse pots were inoculated with 500 oospores per gram prior to planting plant treatments. Growing host plants resulted in higher root rot severity on dry pea bait plants compared to non-host plant treatments. When five cycles of plants were grown in greenhouse pots inoculated with A. euteiches, using five 'rotation' treatments, one treatment with three consecutive rounds of non-host plants reduced the disease severity score in one trial repetition compared to treatments with less than three successive rounds growing a non-host. This research indicates that sampling strategies for Aphanomyces root rot requires multiple sampling locations within a field to enhance the probability of detection, and that crop rotation is an important tool for management of pathogen load in the soil.Item Chemical control and disease reservoir studies of the wheat curl mite (Aceria tosichella Keifer), vector to wheat streak mosaic virus(Montana State University - Bozeman, College of Agriculture, 2016) Murphy, Carmen Yvette; Chairperson, Graduate Committee: Mary BurrowsWheat streak mosaic virus (WSMV) causes yield loss to wheat (Triticum aestivum) in all areas of the world where the crop is grown. No chemical controls for the WSMV vector, the wheat curl mite (WCM, Aceria tosichella Keifer), are approved. Control relies primarily on avoiding a 'green-bridge' of living plant material that can host the disease between seasons. This study aimed to 1) identify chemical treatments for WCM control under conventional and organic systems and clarify misconceptions that treatments, such as sulfur, control WCM and 2) analyze the capacity of 20 grassy species to serve as reservoirs of WSMV and WCM. The effects of insecticides with varying modes of action (carbamate, organophosphate, pyrethroid, neonicotinoid, biological control, oil, ovicide, mite growth inhibitor, and soap) on WCM population growth were tested in the greenhouse. Treatment with the active ingredients aldicarb and chlorpyrifos decreased WCM populations compared to untreated controls (p<0.001 and p<0.001). Field trials were conducted in spring wheat in 2013 and winter wheat in 2013-2014. Similar effects on WSMV spread were not observed in field trials. These trials included ten products consisting of five modes of action: organophosphates, pyrethroid, oil, soap and mite growth inhibitor. Chlorpyrifos was included in the field trials, but no efficacy was seen in 2013 compared to controls under good infection and incidence and infection was low in 2014, therefore we were unable to distinguish any treatment effect. To assess the capacity of 20 grassy species to serve as reservoirs of WSMV and WCM, plants with varying lifespan and origin were grown in the greenhouse and infested with viruliferous WCM. Lifespan had the greatest impact on ability of plants to host WCM (p=0.011) and WSMV (p<0.001). Annual plant species are more likely to host WCM than perennial grasses, with all species hosting WCM. Native and introduced species tested did not differ in ability to host WCM (p=0.735) and WSMV (p=0.096). This study provides evidence of potential for use of active ingredient chlorpyrifos in WCM control, and showed that lifespan is an important determinant of WSMV disease reservoir potential of grassy species.