Theses and Dissertations at Montana State University (MSU)
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/732
Browse
11 results
Search Results
Item Effect of boron on alfalfa yield and quality at various water regimes(Montana State University - Bozeman, College of Agriculture, 2018) Sapkota, Anish; Chairperson, Graduate Committee: Emily Meccage; Emily C. Meccage, Robert N. Stougaard, John P. Tanner, Danielle M. Peterson and Jessica A. Torrion were co-authors of the article, 'Boron fertilization of irrigated alfalfa in Montana' in the journal 'Crop, Forage and Turfgrass Management' which is contained within this thesis.; Emily C. Meccage, Robert N. Stougaard, Breno Bicego and Jessica A. Torrion were co-authors of the article, 'Alfalfa response to boron application at various water regimes' submitted to the journal 'Agronomy Journal' which is contained within this thesis.Boron (B) application on B-deficient soil may improve alfalfa (Medicago sativa L.) yield and quality. The objective of the first study was to identify the effects of foliar-applied B on yield and forage quality of irrigated alfalfa. A two-year study was conducted in 2015/16 at Creston and Dillon, MT. The initial soil B at the Creston and Dillon sites was 0.2 and 0.8 mg kg -1, respectively. The study was designed as a randomized complete block design with four replications of five B rates: 1) 0, split-applications of 2) 0.56, 3) 1.12, 4) 2.24, and a one-time application of 5) 2.24 kg ha -1. Boron fertilization increased (P <0.05) plant B content at both locations. Application of B increased (P < 0.05) alfalfa yield only in the second cutting in 2015 at Dillon, but the influence of B was not observed in any other cuttings, nor in the total yields for either years or location. Forage quality was not affected (P >0.05) by B application. The results of this study suggested no effect of foliar-applied B on alfalfa yield or quality. The objective of the second study was to determine the effect of foliar-applied B at various water regimes on alfalfa yield and quality. The study was conducted in 2016-17 at Creston, MT. Soil at this site contained 0.2 mg B kg -1. The experiment was conducted using a split-plot design with three rates of water regimes as main-plot and five B rates as sub-plot factors. The three water regimes were rainfed, 100 percent evapotranspiration (ET), and 50ET. Boron rates and timing of application was the same as in the first study. Irrigation increased total alfalfa yield by 45% and 12% in 2016 and 2017, respectively, with no yield difference between 100ET and 50ET. In 2016, irrigation decreased (P <0.01) forage nutrient quality in the second cutting but had no effect in 2017. There was no effect of B on yield (P >0.08) for either year. Overall, this study suggested that the foliar-applied B on a B-deficient soil did not increase alfalfa yield or quality, regardless of water regime, or year.Item Sprinkler irrigation system design model and application(Montana State University - Bozeman, College of Agriculture, 1977) ElHanbali, Usaid Izzat SulimanItem The effect of off-season irrigation practices on crop growth(Montana State University - Bozeman, College of Agriculture, 1980) Ekholt, Bruce AlanItem Wind powered irrigation in Montana(Montana State University - Bozeman, College of Agriculture, 1986) Cahoon, JoelItem A mathematical model for surge flow border irrigation(Montana State University - Bozeman, College of Agriculture, 1987) Ghofrani, TorajItem Sprinkler system installation and monitoring of plant microclimate(Montana State University - Bozeman, College of Agriculture, 1978) Oellermann, Douglas JohnItem Computer aided evaluation of the value of water for irrigation(Montana State University - Bozeman, College of Agriculture, 1990) Greiman, William GlenItem Modeling variations in soil moisture and crop yield for an irrigated alfalfa field in southwestern Montana(Montana State University - Bozeman, College of Agriculture, 1986) Harelson, Daniel BishopItem Main line efficiency of sprinkler irrigation systems(Montana State University - Bozeman, College of Agriculture, 1980) Arrington, Robert GoldthwaiteItem Characterization of soil/vegtation on flood irrigated hayfields in Grand Teton National Park, Wyoming : a predictive evaluation tool for agricultural wetlands(Montana State University - Bozeman, College of Agriculture, 2009) Summerford, Sarah Elizabeth; Chairperson, Graduate Committee: Clayton B. Marlow.The Elk Ranch hayfield in Grand Teton National Park (GTNP) has been historically flood-irrigated since the early 20th Century. The park service is now considering closing irrigation to restore native plant communities and enhance Spread Creek fisheries and will need information on the extent of irrigation-created wetlands and how irrigation cessation would change the vegetative component of the ranch. The main objective of this study was to assess the relation between soil and vegetation characteristics of wetland community types at the ranch and to determine if any of the relationships could be used to differentiate between naturally occurring and irrigation created wetlands. Vegetation data were collected from transects centered on a soil pit at 28 randomly located sample points throughout the hayfield. Twenty-six of the 28 sample plots were classified as wetland based on criteria listed by the US Fish and Wildlife Service. Bray-Curtis dissimilarity and nonmetric multi-dimensional scaling were used to analyze percent foliar cover, wetland index value (WIV), soil texture, percent organic matter, redox contrast and abundance, and depth to groundwater and soil saturation for each of the sampled points. The WIV and redox contrast had the greatest dissimilarity (D²), 0.90, and 0.71 respectively across the hayfield. The other measured characteristics had D² values ranging from 0.23 to 0.49 and were strongly correlated with the WIV and redox contrast measures. However, inclusion of these measures contributed little to the differences already identified. Categorical organization of WIV and redox measures indicated that naturally occurring wetlands could be differentiated from wetlands created by flood irrigation in former upland vegetation communities. Combining wetland index value and soil redox contrast suggests park managers could identify wetland community types likely to remain or transition following cessation of flood irrigation at the Elk Ranch. Additional testing at other GTNP sites will be necessary to test the broad application of this approach and refine the assessment categories.