Theses and Dissertations at Montana State University (MSU)
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/732
Browse
5 results
Search Results
Item Microbially induced calcium carbonate precipitation: meso-scale optimization and micro-scale characterization(Montana State University - Bozeman, College of Engineering, 2020) Zambare, Neerja Milind; Chairperson, Graduate Committee: Robin Gerlach and Ellen G. Lauchnor (co-chair); Ellen Lauchnor and Robin Gerlach were co-authors of the article, 'Controlling the distribution of microbially precipitated calcium carbonate in radial flow environments' in the journal 'Environmental science and technology' which is contained within this dissertation.; Robin Gerlach and Ellen Lauchnor were co-authors of the article, 'Spatio-temporal dynamics of strontium partitioning with microbially induced calcium carbonate precipitation in porous media flow cells' submitted to the journal 'Environmental science & technology' which is contained within this dissertation.; Robin Gerlach and Ellen Lauchnor were co-authors of the article, 'Co-precipitation of strontium and barium' submitted to the journal 'Environmental science & technology' which is contained within this dissertation.; Nada Naser, Robin Gerlach and Connie Chang were co-authors of the article, 'Visualizing microbially induced mineral precipitation from single cells using drop-based microfluidics' submitted to the journal 'Nature methods' which is contained within this dissertation.Microorganisms have the potential to impact processes on a scale orders of magnitude larger than their size. For example, microbe-mineral interactions at the micro-scale can drive macro-scale processes such as rock formation and weathering. Many bioremediation technologies derive inspiration from microbial mineralization processes. Microbially induced calcium carbonate precipitation (MICP) can produce calcium carbonate (CaCO 3) precipitates which can be utilized as a biological cement to strengthen porous media by reducing fluid permeability in subsurface fractures or as an immobilization matrix to remove metal contaminants dissolved in groundwater. To make MICP a feasible and successful bioremediation technology in the world outside the lab, it is necessary to bridge the gap between the meso-scale research studies and macro-scale applications. This thesis focuses on such meso-scale studies but also contributes to bridging the gap in the other direction, i.e., meso-scale to micro-scale to gain a fundamental understanding of the cellular level processes behind MICP. The research presented here investigates two applications of MICP with a focus on controlling precipitate distribution and process efficiency in target environments. Subsurface precipitate distribution and metal partitioning during MICP were studied in novel reactive transport systems that mimic application-environment conditions. A radial flow reactor was used to study the spatial distribution of precipitates in conditions similar to subsurface injection well environments. The distribution and degree of metal partitioning during MICP was investigated in batch reactors and porous media flow cells to study kinetics and reactive transport effects on kinetics. In the radial flow environment, more precipitates formed away from the center injection zone. Results showed that longer reactant residence times and an equimolar ratio of calcium to urea were able to maximize precipitation efficiency. Metal partitioning could be maximized at low reactant flow rates and low metal concentrations. The novel flow cell set up used revealed a spatial decoupling between ureolysis and precipitation. A micro-scale investigation of the fundamental MICP process itself is presented wherein microbe-mineral interactions are observed at the cell level. A semi-correlative approach to investigating individual precipitates in microdroplets is presented, using a multitude of microscopy and microanalysis techniques. The presented studies capture MICP across a range of scales.Item Urease immobilization for advancing enzyme-induced calcium carbonate precipitation applications(Montana State University - Bozeman, College of Engineering, 2019) Frieling, Zachary James; Chairperson, Graduate Committee: Robin Gerlach and Adrienne Phillips (co-chair)Microbially induced calcium carbonate precipitation (MICP) is a widely studied field of research exploiting bacterial activity to form a calcium carbonate precipitate that has been used to modify porous media. MICP is an enzymatically driven process and uses the enzyme urease to change solution chemistry to favor calcium carbonate precipitation. An enzyme slurry can be used in lieu of microbial growth and can be applied in a similar fashion and is commonly referred to as enzymatically induced calcium carbonate precipitation (EICP). For some applications temperature can stunt microbial growth and EICP may be the preferred method. However, as the temperature increases further the urease enzyme is thermally inactivated inhibiting calcium carbonate precipitation. Thermal inactivation limits the potential use of EICP in higher temperature environments. To combat thermal inactivation, immobilization of the urease enzyme through entrapment in silica gel and adsorption on an internally porous ceramic proppant was evaluated, and the first order inactivation coefficient (kd) was determined for temperatures between 60°C and 90°C. It was found that immobilization of the urease enzyme drastically reduced the apparent k d when compared to the free, non-immobilized form. Column experiments were performed using the urease immobilized on the ceramic proppant at room temperature (~23°C) and at 60°C. It was found that the immobilized urease retained high activity for the duration of the experiments even when subjected to the elevated temperature condition. The immobilized form of the urease enzyme was indeed protected from thermal degradation. It also seemed that the immobilized form of the urease enzyme was shielded from inactivation from active calcium carbonate precipitation, as observed in previous EICP and MICP experiments, in which ureolytic activity decreased rapidly as calcium carbonate precipitated. As a result, the immobilized form of the urease enzyme showed promise for advancing EICP applications.Item Kinetics of thermally inactivated ureases and management of sand production through ureolysis-induced mineral precipitation(Montana State University - Bozeman, College of Engineering, 2018) Morasko, Vincent John; Chairperson, Graduate Committee: Robin Gerlach; Adrienne Phillips (co-chair)Biocement has the potential to seal subsurface hydraulic fractures, manipulate subsurface flow paths to enhance oil recovery, treat fractured cement, stabilize soil structures and minimize dust dispersal. Biocement can be formed using the urease enzyme from various sources (bacteria, plant, or fungi) to break down urea into carbonate, combining with calcium for use in engineering applications such as biocement production. Higher temperatures, pressures, and extreme pH conditions may be encountered as these engineering applications expand deeper into the subsurface. Temperatures beyond 1000 meters can exceed 80°C, potentially rapidly inactivating the enzyme. The first part of this study focused on monitoring urea hydrolysis catalyzed by jack bean urease at temperatures ranging from 20-80°C. An increasing rate of urease inactivation was observed with increasing temperatures and first-order models described the kinetics of urea hydrolysis and enzyme inactivation properly. The second part of this study focused on developing a technology to mitigate sand transport in oil and gas wells. This study addressed a method to cement sand in the subsurface so that it is not returned when oil or gas is extracted. As the sand leaves the formation, it can cause damage in the subsurface, leading to economic concerns, as well as reducing the lifespan of pumps, piping and other components on the well pad. A reactor system was developed to mimic a subsurface oil well that produces sand. Biocement production was promoted within the reactor, utilizing common sources of urease (Sporosarcina pasteurii and Canavalia ensiformis or jack bean meal). The resultant calcium carbonate/sand mass was subjected to elevated flowrates, simulating field conditions where sand is potentially fluidized and potentially transported into the wellbore. It was shown that biocement can reduce sand transport while allowing for higher flow rates than conditions without biocement. The findings from this study broaden the potential application range of biocementation technologies into higher temperature environments. Applying biocement specifically to sand mitigation may have significant environmental, economic, and safety implications within the natural resource industry.Item Nuclear magnetic resonance studies of biofilm - porous media systems(Montana State University - Bozeman, College of Engineering, 2017) Kirkland, Catherine Mullinnix; Chairperson, Graduate Committee: Sarah L. Codd; Joseph D. Seymour (co-chair); Sarah L. Codd was a co-author of the article, 'Low-field borehole NMR applications in the near subsurface environment' submitted to the journal 'Vadose zone journal' which is contained within this thesis.; Randy Hiebert, Adrienne Phillips, Elliot Grunewald, David O. Walsh, Joseph D. Seymour and Sarah L. Codd were co-authors of the article, 'Biofilm detection in a model well-bore environment using low-field NMR' in the journal 'Groundwater monitoring and remediation' which is contained within this thesis.; Maria P. Herrling, Randy Hiebert, Andrew T. Bender, Elliot Grunewald, David O. Walsh and Sarah L. Codd were co-authors of the article, 'In-situ detection of subsurface biofilm using low-field NMR - a field study' in the journal 'Environmental science and technology' which is contained within this thesis.; Sam Zanetti, Elliot Grunewald, David O. Walsh, Sarah L. Codd and Adrienne J. Phillips were co-authors of the article, 'Detecting microbially-induced calcite precipitation (MICP) in a model well-bore using downhole low-field NMR' in the journal 'Environmental science and technology' which is contained within this thesis.; Jessica Weisbrodt, Catherine M. Kirkland, Nathan H. Williamson, Susanne Lackner, Sarah L. Codd, Joseph D. Seymour, Gisela Guthausen and Harald Horn were co-authors of the article, 'NMR investigation of water diffusion in different biofilm structures' submitted to the journal 'Biotechnology and bioengineering' which is contained within this thesis.Nuclear magnetic resonance (NMR) allows for in-situ non-invasive studies of opaque systems over a wide range of length and time scales, making the method uniquely suited to studies of biofilms and porous media. The research comprising this thesis uses NMR to explore biophysical, chemical, and transport properties within heterogeneous porous media systems at both a macro- and micro-scale. The macro-scale projects validate a low-field borehole NMR instrument to monitor field-scale environmental engineering applications like subsurface biofilms and microbially-induced calcite precipitation (MICP). Subsurface biofilms are central to bioremediation of chemical contaminants in soil and groundwater whereby micro-organisms degrade or sequester environmental pollutants like nitrate, hydrocarbons, chlorinated solvents and heavy metals. When composed of ureolytic microbes, subsurface biofilms can also induce calcite precipitation. MICP has engineering applications that include soil stabilization and subsurface barriers, as well as sealing of cap rocks and well-bore regions for carbon dioxide sequestration. To meet the design goals of these beneficial applications, subsurface biofilms and MICP must be monitored over space and time - a challenging task with traditional methods. The low-field borehole NMR tool recorded changes in the T 2 relaxation distribution where enhanced relaxation indicated biofilm accumulation in a sand bioreactor and in subsurface soil. Additionally, the tool was able to detect MICP in a sand bioreactor. The changed mineral surface of the sand lead to an increase in T 2 relaxation times. The complementary high-field NMR project investigated micro-scale internal structures and mass transport within biofilm granules used for wastewater treatment. Granular sludge, composed of spherical aggregates of biofilm grown without a carrier, is an innovative biological treatment method with the potential to vastly reduce the cost of wastewater treatment without sacrificing efficiency. Large gaps remain, however, in our understanding of the fundamental formation mechanisms and the factors that control granule activity and stability. Magnetic resonance imaging (MRI) identified heterogeneous internal structures within aerobic granular sludge where relaxation rates and diffusion coefficients vary. Ultimately, these results will help improve modeling for optimization of granular sludge wastewater treatment process design.Item Biofilm-induced calcium carbonate precipitation : application in the subsurface(Montana State University - Bozeman, College of Engineering, 2013) Phillips, Adrienne Janell; Chairperson, Graduate Committee: Robin Gerlach; Robin Gerlach , Ellen Lauchnor , Andrew C. Mitchell, Alfred Cunningham and Lee Spangler were co-authors of the article, 'Engineered applications of ureolytic biomineralization: a review' in the journal 'The Journal of bioadhesion and biofilm research' which is contained within this thesis.; Ellen Lauchnor, Joachim Eldring, Richard Esposito, Andrew Mitchell, Robin Gerlach, Alfred Cunningham and Lee Spangler were co-authors of the article, 'Potential CO 2 leakage reduction through biofilm-induced calcium carbonate precipitation' in the journal 'Environmental science and technology' which is contained within this thesis.; Joachim Eldring, Randy Hiebert, Ellen Lauchnor, Andrew Mitchell, Alfred Cunningham, Robin Gerlach and Lee Spangler were co-authors of the article, 'A meso-scale test vessel for the examination of high pressure processes: microbially-induced calcium carbonate precipitation (MICP) treatment of hydraulic fractures' submitted to the journal 'Journal of petroleum science and engineering' which is contained within this thesis.Subsurface leakage mitigation strategies using ureolytic biofilm- or microbially-induced calcium carbonate precipitation (MICP) have been investigated for sealing high permeability or fractured regions. In the subsurface, this technology may help reduce unwanted preferential flow pathways thereby improving the storage security of geologically-stored carbon dioxide or sealing fractures caused by hydraulic fracturing. MICP has been researched for other applications, such as consolidating porous materials, improving construction materials and remediating environmental concerns. Injection strategies to control saturation conditions and region-specific precipitation were developed in sand-filled columns. Sporosarcina pasteurii biofilms were established and calcium and urea solutions were injected to promote mineralization. These injection strategies resulted in (1) promoting homogeneous distribution of CaCO 3 along the flow path, (2) minimizing near-injection point plugging, and (3) promoting efficient precipitation by reviving ureolytic activity. Additionally, a Darcy-scale model was calibrated and used to predict experimental results. The developed injection strategies were used to repeatedly seal a hydraulically fractured, 74 cm diameter Boyles Sandstone core under ambient pressures. To study meso-scale samples under relevant subsurface pressure conditions, a high pressure test vessel, rated to pressures of 96 bar, was developed. The hydraulically fractured sandstone core was loaded into the vessel and treated with MICP at 44 bar of confining pressure. After treatment, the permeability was reduced and the sandstone core withstood three times higher well bore pressures before re-fracturing compared to before MICP treatment. Additionally, MICP was promoted in three 2.5 cm diameter Berea Sandstone cores under 76 bar of pressure. The cores' permeabilities were reduced and their minimum capillary displacement pressures (MCDP) were increased. Exposure of the biomineralized cores to 24 hours of supercritical CO 2 did not negatively impact the permeability or MCDP achieved after mineralization. These studies suggest MICP may potentially seal and strengthen subsurface high permeability regions or fractures with the advantage that MICP technologies use low-viscosity fluids to penetrate small aperture pores that may not be reachable by traditional cement-based sealing technologies. These studies also point to the need for further research and development activities, particularly under subsurface relevant pressure conditions.