Theses and Dissertations at Montana State University (MSU)
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/732
Browse
2 results
Search Results
Item Fossil viruses, redox paradigms and predictive metabolism from a systems biology perspective(Montana State University - Bozeman, College of Letters & Science, 2014) Heinemann, Joshua Vance; Chairperson, Graduate Committee: Brian Bothner; Walid S. Maaty, George Gauss, Narahari Akkaladevi, Susan K. Brumfield, Vamseedhar Rayaprolu, Mark Young, C. Martin Lawrence and Brian Bothner were co-authors of the article, 'Fossil record of an HK-97-like provirus' in the journal 'Virology' which is contained within this thesis.; Timothy Hamerly, Walid S. Maaty, Navid Movahed, Joseph D. Steffens, Benjamin D. Reeves, Jonathan K. Hilmer, Jesse Therien, Paul A. Grieco, John W. Peters and Brian Bothner were co-authors of the article, 'Expanding the paradigm of thiol redox in the thermophilic root of life' in the journal 'Biochimica et biophysica acta' which is contained within this thesis.; Aurélien Mazurie, Monika Tokmina-Lukaszewska, Greg J. Beilman and Brian Bothner were co-authors of the article, 'Application of support vector machines to metabolomics experiments with limited replicates' in the journal 'Metabolomics' which is contained within this thesis.; Brigit Noon, Mohammad J. Mohigmi, Aurélien Mazurie, David L. Dickensheets and Brian Bothner were co-authors of the article, 'Real-time digitization of metabolomic patterns from a living system using mass spectrometry' submitted to the journal 'Journal of the American Chemical Society' which is contained within this thesis.One of the goals of systems biology is to develop a model which encapsulates the molecular, structural and temporal complexity of a living organism. While modern omics experiments can deliver a high resolution view of an organism's molecular complexity, methods for correlating the information from multiple biomolecular systems (i.e. genes, proteins and metabolites) and their changes over time remain greatly underdeveloped. Presented in this research are: (1) methods for understanding the inter-relation of multiple biomolecular systems correlating genomics, proteomics and metabolomics experiments; (2) techniques for machine learning based metabolic biomarker selection; (3) robotics technology for real-time measurement of changes in metabolism. The methods for correlating information from multiple biomolecular systems have provided a new perspective of biomolecular adaptation and evolutionary relationships in the thermophilic archaea. The techniques for biomarker selection have provided a method to assess the reliability of biomarkers in experiments where limited samples are available. The new technology has provided an engineered system for automated analysis of metabolic patterns and how they change over time. Together, these results have created a framework for future improvement of our understanding of biology through the use of molecular biology, machine learning and robotics.Item X-ray crystallographic studies of sulfolobus turetted icosahedral virus (STIV) : a hyperthermophilic virus from Yellowstone National Park(Montana State University - Bozeman, College of Letters & Science, 2006) Larson, Eric Thomas; Chairperson, Graduate Committee: C. Martin LawrenceSulfolobus turreted icosahedral virus (STIV) was isolated from acidic hot springs of Yellowstone National Park and was the first hyperthermophilic virus described with icosahedral capsid architecture. Structural analysis of the STIV particle and its major capsid protein suggests that it belongs to a lineage of viruses that predates the division of the three domains of life. Functional predictions of the viral proteins are hindered because they lack similarity to sequences of known function. Protein structure, however, may suggest functional relationships that are not apparent from the sequence. Thus, we have initiated crystallographic studies of STIV and expect to gain functional insight into its proteins while illuminating the viral life cycle. These studies may also provide genetic, biochemical, and evolutionary insight into its thermoacidophilic host and the requirements for life in these harsh environments. The first three proteins studied in structural detail are A197, B116, and F93. As anticipated, these structures suggest possible functions. The structure of A197 reveals a glycosyltransferase GT-A fold.