Theses and Dissertations at Montana State University (MSU)
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/732
Browse
4 results
Search Results
Item Pilot study of a high capacity ductile seismic holdown for cross laminated timber(Montana State University - Bozeman, College of Engineering, 2019) Nicholas, John Howison; Chairperson, Graduate Committee: Damon FickNew manufactured wood products referred to as mass timber have allowed for greater seismic load capacities than ever before for designing wood structures. The increased capacities could allow for taller wood structures; however, traditional wood connections do not meet the seismic performance needs for new manufactured wood products such as cross laminated timber (CLT). New connection methods must be investigated to allow for the growth of the CLT industry in mid- and high-rise structures. The objective of this research is to develop a wood connection to resist larger uplift forces experienced in CLT structures and provide energy dissipation in seismic events. The connection development was performed through fastener testing using self-drilling dowel fasteners for concealed connections with steel knife plates installed in a wood member. Finite element modeling and testing of reduced section steel plate to provide a ductile response to cyclic loading was performed to determine the feasibility of this connections style. The results of the investigation indicate that reduced section steel plates that limit the connection failure to a desired location in the steel plate could greatly increase the seismic performance of CLT seismic force resisting systems.Item Computer education of influence lines for continuous beams(Montana State University - Bozeman, College of Engineering, 1985) Ehlert, Richard AndrewItem Curvature ductility of reinforced and prestressed concrete columns(Montana State University - Bozeman, College of Engineering, 1984) Suprenant, Bruce AlanEngineers are concerned with the survival of reinforced and prestressed concrete columns during earthquakes. The prediction of column survival can be deduced from moment-curvature curves of the column section. An analytical approach is incorporated into a computer model. The computer program is based on assumed stress-strain relations for confined and unconfined concrete, nonprestressed and prestressing steel. The results of studies on reinforced and prestressed concrete columns indicate that reinforced concrete columns may be designed to resist earthquakes, while prestressed concrete columns may not. The initial reduction in moment capacity, after concrete cover spalling, of a prestressed concrete column could be as much as 50%. Analyses indicate that the bond between concrete and prestressing strand after concrete cover spalling is not critical.Item Research on earthquake resistant structures(Montana State University - Bozeman, College of Engineering, 1949) Markellis, Constantine A.