Theses and Dissertations at Montana State University (MSU)
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/732
Browse
2 results
Search Results
Item Effects of tax credits on carbon capture and sequestration in a multi-phased model(Montana State University - Bozeman, College of Engineering, 2021) Strahan, Cooper Davis; Chairperson, Graduate Committee: Sean YawStudies have consistently shown that the increase of CO 2 in the atmosphere is correlated to rising temperatures. In order to stop the rise in global temperatures, climate change mitigation strategies will need to be deployed at scale. All of the plans that meet the goal of staying below 2 °C include CO 2 capture and storage (CCS) as one of those strategies. CCS is a climate change mitigation strategy aimed at reducing the amount of CO 2 vented into the atmosphere by capturing CO 2 emissions from industrial sources, transporting the CO 2 via a dedicated pipeline network, and injecting it into geologic reservoirs. Designing CCS infrastructure is a complex problem requiring concurrent optimization of source selection, reservoir selection, and pipeline routing decisions. Current CCS infrastructure design methods assume that project parameters including costs, capacities, and availability, remain constant throughout the project's lifespan. In this research, we introduce a novel, multi-phased, CCS infrastructure design model that allows for analysis of more complex scenarios that allow for variations in project parameters across distinct phases. We also apply this new model to a study exploring the impacts of modifying CCS tax credits on the economic viability of CCS projects.Item Scalable solutions to the carbon capture infrastructure problem(Montana State University - Bozeman, College of Engineering, 2020) Whitman, Caleb; Chairperson, Graduate Committee: Sean YawCO 2 capture and storage (CCS) is a climate change mitigation strategy that aims to reduce the amount of CO 2 vented into the atmosphere from industrial processes. Designing cost-effective CCS infrastructure is critical to meeting CO 2 emission reduction targets and is a computationally challenging problem. CCS infrastructure design is a generalization of the capacitated fixed charge network flow problem, CFCNF. CFCNF is NP-hard with no known approximation algorithms. In our work, we design three novel heuristics to solve CCS. We evaluate all heuristics on real life CCS infrastructure design data and find that they quickly generate solutions close to optimal. Decreasing the time it takes to determine CCS infrastructure designs will support national-level scenarios, undertaking risk and sensitivity assessments, and understanding the impact of government policies (e.g. 45Q tax credits for CCS).