Theses and Dissertations at Montana State University (MSU)

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/732

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Selected topics toward the experimental design of a waveguide confined raman laser wavelength conversion system
    (Montana State University - Bozeman, College of Engineering, 2011) Hintzman, Michael Ryan; Chairperson, Graduate Committee: Joseph A. Shaw
    As an alternative to current visible variable-wavelength lasers, a Raman conversion laser system was studied using a hollow-core capillary. A pulsed Nd:YAG laser is frequency doubled to 532 nm using a KTP crystal prior to coupling into the capillary that is pressurized from 0 PSI to 100 PSI with either CO 2 or H 2 gas. The KTP crystal is then removed and found that the 1064 nm laser light is phase-matched when coupled into the capillary. The phase-matched coupled light produces observable third anti-Stokes light, while suppressing the higher Stokes conversion light. The methods used to couple a laser beam into a hollow-core glass capillary, examination of the acceptance angle of a KTP crystal, and the Raman conversion wavelengths due to 1064 nm laser pulses are documented in this paper.
  • Thumbnail Image
    Item
    Soil penetrometer with Ramon sampling, fluorescence and reflected light imaging : a feasibility study
    (Montana State University - Bozeman, College of Engineering, 2005) Kadiri, Youssef; Chairperson, Graduate Committee: David Dickensheets
    This thesis describes the feasibility and capabilities of a Fluorescence Imaging and Raman Probe (FIRP). This miniature instrument will combine reflected light and fluorescence imaging and Raman spectroscopy for potential exobiology or terrestrial environmental use. With the help of a penetrometer, the probe might be used to assess the presence of life on Mars and gain an understanding of Martian soil. Furthermore, this thesis will delineate how this penetrometer may be used to detect underground constituents and pollutants present on our own planet. The proposed FIRP will be incorporated into a penetrometer that will go several meters below the surface seeking bio-signatures and information about soil composition. Microscopic imaging with reflected light will provide morphological context, fluorescence imaging can provide biomass detection, and Raman spectrometry can provide chemical identification of imaged material. The fluorescence technique will mainly depend on the performance of a non-cooled low-noise monochrome imaging camera, optical filters, and high efficiency light emitting diodes in the UV and visible. This miniature instrument will be connected by optical fiber to a surface platform that will host the Raman spectrometer and Raman laser excitation source. This thesis will show the experimental results of a bench-top proof of concept system. Images and spectra were collected and analyzed. Important choices and characteristics of the optical design are discussed relative to Raman and fluorescence detection. Finally, the thesis will propose a prototype of a compact device that combines both sensing methods and is compatible with a penetrometer platform.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.