Theses and Dissertations at Montana State University (MSU)
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/732
Browse
3 results
Search Results
Item Soil health response to cropping systems in semi-arid Montana(Montana State University - Bozeman, College of Agriculture, 2024) Ashford, Zane Ann; Chairperson, Graduate Committee: Catherine A. ZabinskiTraditional cropping systems in the northern Great Plains (NGP) were dominated by cereal-fallow rotations until the 1970s, resulting in increased soil erosion, decreased soil organic matter (SOM) accumulation, and declines in soil biological activity. Recent shifts toward continuous and more diverse no-till crop production attempt to increase sustainability, diversify economic opportunities, and keep up with the growing food demand without converting more land into agriculture. With a two-year study, I explored the effects of crop types in diverse, no-till, crop sequences on soil health in dryland and irrigated systems on one farm in semi-arid Montana, using biological indicators of potentially mineralizable nitrogen (PMN), soil enzyme activity (beta- glucosaminidase, beta-glucosidase, arylsulfatase, and acid and alkaline phosphatases), and permanganate oxidizable carbon (POxC), a measure of labile carbon. Crop sequences included four crop types -- cereals, oilseeds, legumes, and root crops. Root crops, namely sugar beet, drove soil responses in PMN, evident by increased plant-available N in soils following sugar beet. Soil enzyme activity, an indicator of nutrient cycling capacity, was strongly correlated with SOM, but did not follow a pattern based on crop type. Labile carbon changed in soils between years but did not respond consistently to crops. This research also explored the soil health gap by comparing soil health in cultivated systems to nearby grasslands. In a paired-site comparison on two farms in Montana, biological health indicators were 45% lower, on average, in cultivated soils compared to adjacent uncultivated soils. This difference was consistent with lower SOM averages, offering a simple assessment to quantify the maximum attainable soil health capacity within a specific agroecosystem. Soil acidification, a growing concern for producers across the NGP, contributed to 42% lower soil enzyme activity, based on four enzymes, compared to adjacent neutral pH cultivated soils. Enzyme activity was the only soil health parameter that was lower in acid soils compared to neutral pH soils, demonstrating the sensitivity of soil enzymes. Overall, these results indicate that biological soil health indicators are sensitive to changes in crop production, changing yearly, and provide farmers with the opportunity to fine- tune their management practices to meet their soil health goals.Item Woody plant expansion in the northern Great Plains: a multi-scale assessment of the drivers and ecological implications of increasing woody abundance in a temperate open ecosystem(Montana State University - Bozeman, College of Agriculture, 2022) Currey, Bryce Alan; Chairperson, Graduate Committee: Jack Brookshire; This is a manuscript style paper that includes co-authored chapters.Open ecosystems (i.e., non-forested ecosystems) are inherently dynamic ecosystems that are essential to the persistence of humankind; yet many are being altered, degraded, or lost. One of the largest changes to open ecosystems globally is an increase in greenness, driven by increasing plant photosynthetic capacity or altered species composition. Often this transition in species composition occurs when woody species (i.e., trees and shrubs) increase in dominance or replace contemporary herbaceous species, a phenomenon referred to here as woody plant expansion (WPE). WPE has been proposed as a possible solution to climate change, yet ultimately has the potential to alter grasslands into a novel state. This dissertation improves the understanding of how open ecosystems have been altered by WPE. The chapters within this document offer a multi-scalar examination of the drivers and ecological implications of WPE in the Northern Great Plains (NGP) of North America, one of the largest grasslands remaining globally. Specifically, I answer three main questions: (1) What is the extent and magnitude of WPE across the NGP? (2) What are the drivers, ecosystem implications, and biogeochemical impacts of WPE? and (3) Moving forward, how should research be prioritized in ecosystems like the NGP, particularly concerning climate mitigation and management? I begin with an introduction to the NGP, the implications of WPE, and an overview of this dissertation. I then examine the drivers and interactions of WPE and the recent increase in vegetative productivity. Next, I couple high-resolution estimates of WPE from the heart of the NGP with data from sampling plots to examine the impact that WPE has on ecosystem biogeochemistry. Next, WPE is examined against agricultural expansion and I propose that future work examining large-scale changes and the subsequent management of open ecosystems be reframed towards weighing the impacts on biodiversity, carbon storage, and ecosystem resilience. Finally, I summarize all findings with implications for future research. The NGP has the potential to represent the future of North American grasslands and, while this dissertation answers many questions, the future remains highly uncertain.Item Biogeochemical and plant functional group response to long-term snow manipulation in a subalpine grassland(Montana State University - Bozeman, College of Agriculture, 2013) Holsinger, Jordan Paul; Chairperson, Graduate Committee: Jack BrookshireSnow represents an important control over plant communities in seasonally snow-covered ecosystems. It constrains the growing season and affects the availability of important resources including water, nitrogen (N) and phosphorus (P). Snow depth, distribution and duration have been affected by global climate change making it increasingly important to understand the effects of changing snow regimes on terrestrial ecosystems. Here we leverage a 43-year snow manipulation experiment to examine the effects of long-term changes in snow depth on plant community structure, resource availability and interactions therein in a common grassland type of the northern Rocky Mountains in western North America. Long-term experimental doubling and quadrupling of snowpack was associated with a significant shift in plant functional group distribution to a more forb rich community. Snow addition has resulted in a two to three-fold increase in forb to grass biomass ratios over time. Forbs consistently had greater N and P contents and lower nutrient use efficiencies compared to grasses. Forbs also displayed higher rates of net photosynthesis relative to grasses and sustained positive carbon (C) fixation rates late into the growing season after grasses had ceased. Though there is evidence that water exerts considerable control over ecosystem processes, increased snow depth did not have affect soil water availability through the growing season. However, snow depth was associated with significant differences in plant-available phosphate across the entire growing season with approximate 15% and 31% increases in pools of available P relative to ambient snowpack depth for doubled and quadrupled snowpacks respectively. Estimates of direct P inputs via dust and the ratio of available P to total P in the soil suggest that internal cycling was largely responsible for the observed differences in pools of available P. However, growing season net mineralization rates do not differ across treatments. This may suggest that winter processes make significant contributions to nutrient cycles. It is possible that the increased availability of P favors the shift to a forb-rich community under deeper snow because of their increased productivity under dry conditions and that the increased litter quality of forbs likewise promotes increased litter decomposition and mineralization, especially of P.