Theses and Dissertations at Montana State University (MSU)
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/732
Browse
9 results
Search Results
Item Understanding the effects of floodplain shade on hyporheic and stream channel temperature cycles(Montana State University - Bozeman, College of Agriculture, 2024) Fogg, Sarah Kathleen; Chairperson, Graduate Committee: Geoffrey C. Poole; This is a manuscript style paper that includes co-authored chapters.River reaches with coarse-grained alluvial floodplains have a breadth of lateral interaction between the channel and surrounding landscape, yielding extensive riparian zones and high rates of gross water exchange between the channel and substrate (i.e., hyporheic exchange). The lateral hyporheic zone on floodplain rivers is often near the ground surface, allowing for heat exchange between the atmosphere, unsaturated sediments, and hyporheic zone. We hypothesized that floodplain shade overlying lateral hyporheic water influences the conductive heat flux through unsaturated sediments, thus influencing hyporheic temperatures and temperatures in associated stream channels. We conducted simulation modeling experiments to test the potential effects of floodplain shade on hyporheic and stream channel temperatures. We found that scenarios with floodplain shade led to cooler hyporheic and stream temperatures than scenarios lacking floodplain shade under a variety of realistic floodplain conditions. We conclude that floodplain forest shade is a novel consideration for riparian management on floodplain river reaches and may be crucial in managing and maintaining cold-water habitat into the future.Item Integrating cover crop mixtures in the northern Great Plains: an ecological assessment on crop productivity, biodiversity, and temperature and moisture conditions(Montana State University - Bozeman, College of Agriculture, 2020) DuPre, Mary Ellyn; Chairperson, Graduate Committee: Fabian D. Menalled and Tim F. SeipelCropping systems can impact crop productivity and functioning of biodiversity in the Northern Great Plains, a region heavily reliant on low diversity crop rotations and off-farm inputs, and a region predicted to experience warmer and drier climate scenarios by mid-century. In three complementary studies, I compared the impacts of cover crop mixtures and termination methods on crop productivity and three forms of the associated biodiversity (weeds, soil fungi, and ground beetles), under varying temperature and soil moisture conditions. First, I assessed the impacts of the presence (cover crops and fallow) and composition (cover crop mixtures) of cover crops, termination methods (herbicide, cattle-grazing, and haying), as a function of temperature and soil moisture conditions on crop yields, and weed communities. A 5-species, early-spring mixture generated cooler temperatures, produced more biomass, and suppressed weed biomass under warmer and drier conditions, compared to summer fallow and the 7-species, mid-spring mixture. However, lower soil moisture and subsequent reduced grain yields following the mixtures, especially under warmer and drier conditions, suggests that continuously rotating wheat with mixtures may not be the optimal method to diversify small-grain cropping systems. Second, I assessed the impacts of the presence and composition of cover crops, termination methods and temperature and soil moisture conditions on fungal communities. The early-season cover crop mixture reduced plant pathogen abundance and enhanced AM fungal richness in both the soil and subsequent wheat root crop. The enhancement of beneficial fungi and fewer plant pathogens may be a proxy to better support ecosystem services through the use of cover crop mixtures. Third, I compared ground beetle communities among cover crops treatments and termination methods. Ground beetle activity density was not impacted by termination methods and was greatest in the early-season mixture at the beginning of the growing season and in summer fallow at the end of the growing season, while the mid-season mixture peaked in the middle. Ground beetle diversity peaked in the middle and differed in community composition earlier in the growing season. These results indicate that cover crop mixtures can act as an ecological filter to ground beetle communities to better support pest regulation. Overall, these studies indicate that cover crop mixtures can support crop productivity and the associated biodiversity with changes to temperature and soil moisture, although, with agronomic and ecological trade-offs.Item Understanding hydrogeomorphic influences on stream network denitrification and temperature dynamics(Montana State University - Bozeman, College of Agriculture, 2020) Carlson, Samuel Paul; Chairperson, Graduate Committee: Geoffrey PooleThe removal of nitrate from stream networks through the process of denitrification is an important component of local and regional nutrient cycles, but the controls on stream network denitrification rates remain poorly understood. Previous work has demonstrated general effects of stream channel size and nitrate loading rates on network-scale denitrification rates, but has been unable to elucidate connections between the complex environmental template of streams, and resulting denitrification rates. Understanding links between land use and management practices, physical characteristics of streams, and stream denitrification rates is critical to interpreting observed patterns of nitrate in freshwater systems and forming holistic management strategies for reducing the negative effects of elevated nitrate concentrations. To address these critical uncertainties, I developed a stream network simulation model that incorporates the effects of whole-stream aerobic respiration on biotic denitrification demand. This model is applied to a small, subalpine stream network under scenarios designed to explore: 1) the implications of temperature-controlled, network scale patterns of respiration rates on the distribution and overall magnitude of stream network denitrification, and 2) the effect of logging-induced channel simplification on whole network denitrification rates. The first analysis is complimented by an evaluation of controls on stream temperature across this network, revealing the spatially and temporally variable influence of in-network lakes on stream temperatures. Results from the first analysis suggest that reach- and network-scale denitrification rates are strongly influenced by respiration rate and temperature when nitrate supplies are high relative to removal rates, indicating an increased contribution of lower, warmer streams to whole-network denitrification. The second analysis reveals that historical logging has caused a ~30% loss of stream network denitrification capacity, which is manifested as a corresponding reduction in whole-network denitrification rates when nitrate supplies are not limiting. In sum, this work emphasizes the diverse set of factors that influence reach- and watershed-scale biogeochemical characteristics and processes, and suggests that land management actions which influence stream morphology may also alter stream denitrification rates.Item Mortality dynamics and life tables of Megachile rotundata(Montana State University - Bozeman, College of Agriculture, 2019) Donahoo, Claire Katherine; Chairperson, Graduate Committee: Robert K. D. Peterson.; Kevin M. O'Neill, Casey M. Delphia and Robert K. D. Peterson were co-authors of the article, 'Mortality dynamics and life tables of the alfalfa leafcutting bee, Megachile rotundata (Hymenoptera: Megachilidae)' which is contained within this thesis.The alfalfa leafcutting bee, Megachile rotundata (F.), contributes to the pollination of more than two-thirds of alfalfa seed production in North America. However, population losses of more than 50% are common in the U.S., requiring many alfalfa seed producers to import costly bees from Canada. Understanding the mortality dynamics of M. rotundata and being able to estimate these impacts on their populations are critical for identifying ways to conserve and increase their populations. Therefore, this study had three objectives: 1) identify mortality classes for M. rotundata in brood cells; 2) experimentally manipulate parasitism and temperature to determine their impact on total mortality; and 3) estimate mortality risks using the multiple-decrement life table (M-DEC). Research was conducted over two years on a 38.5 ha alfalfa field in Toston, MT. Nest shelters were manipulated for a main temperature treatment (low vs. high) and a sub-treatment for parasitism (backing-present vs. backing-absent). Females constructed and provisioned nests during the summer and offspring mortality was assessed during the summer and the following fall. Mortality classes were then analyzed using the M-DEC model. We found no temperature-treatment effect, so our main treatment was not used in the analyses. However, for every 1 °C increase in nest-tunnel temperature, there was a 7% increase in total mortality. Nest boxes without felt backing (backing-absent) had a 43% increase in mortality over both years compared to those with felt (backing-present). Average temperature decreased by 4.4 °C from 2017 to 2018, while average relative humidity increased by 12.1%. Total mortality was approximately 15% for both years, but the proportion of each mortality class differed substantially, with death by parasitoids greatest in 2017 and death by pollen ball greatest in 2018. Mortality from each class was highly irreplaceable in that it is unlikely to be replaced by another class, and death by predation was the only cause with similar mortality between the two years. The ability to identify and quantify mortality classes and their respective irreplaceable mortality, especially for parasitoids, pollen ball, and predators, will help producers maintain and increase bee populations.Item Land-atmosphere exchange of carbon and energy at a tropical peat swamp forest in Sarawak, Malaysia(Montana State University - Bozeman, College of Agriculture, 2017) Tang Che Ing, Angela; Chairperson, Graduate Committee: Paul C. Stoy; Paul C. Stoy, Kevin K. Musin, Edward B. Aeries, Joseph Wenceslaus, Mariko Shimizu, Ryuichi Hirata and Lulie Melling were co-authors of the article, 'The role of biophysical drivers in controlling the variability of net ecosystem CO 2 exchange in a tropical peat forest in Sarawak, Malaysian Borneo' submitted to the journal 'Global change biology' which is contained within this thesis.; Paul C. Stoy, Kevin K. Musin, Edward B. Aeries, Joseph Wenceslaus, Mariko Shimizu, Ryuichi Hirata and Lulie Melling were co-authors of the article, 'The exchange of water and energy between a tropical peat forest and the atmosphere: seasonal trends and comparison against global tropical rainforests' submitted to the journal 'Geophysical research letters' which is contained within this thesis.; Paul C. Stoy, Kevin K. Musin, Edward B. Aeries, Joseph Wenceslaus, Mariko Shimizu, Ryuichi Hirata and Lulie Melling were co-authors of the article, 'Eddy covariance measurements of methane flux at a tropical peat forest in Sarawak, Malaysian Borneo' submitted to the journal 'Agricultural and forest meteorology' which is contained within this thesis.Tropical peatlands comprise 11% of the global peat area of ca. 400 Mha and are estimated to store about 89 Gt of carbon (C). However, considerable uncertainties remain about their present role in global C cycle as interannual ecosystem-scale measurements of undisturbed tropical peat forests have not been measured to date. Hence, an eddy covariance tower was instrumented in a tropical peat forest in Sarawak, Malaysia over four years from 2011 to 2014. We found that the forest was a net source of CO 2 to the atmosphere during every year of measurement. The inter-annual variation in net ecosystem CO 2 exchange (NEE) was largely modulated by the variation in gross primary production (GPP), which was jointly controlled by vapor pressure deficit (VPD) and leaf area index (LAI) in addition to photosynthetically active photon flux density (PPFD). Greater reduction of GPP in 2011 and 2012, are likely attributed to the relative low atmospheric transmission due to massive peat fires in Indonesia. Similarly, no analysis to our knowledge has measured whole-ecosystem methane (CH 4) flux from a tropical peat forested wetland to date despite their importance to global CH 4 budget. The two-month average of C-CH 4 flux measurements, on the order of 0.024 g C-CH 4 m -2 d -1, suggests that tropical peat forests are not likely to be disproportionally important to global CH 4 flux. Results demonstrate a limited ability for simple models to capture the variability in the diurnal pattern of CH 4 efflux, but also consistent responses to soil moisture, water table height, and precipitation over daily to weekly time scales. The sensible heat flux (H) and latent heat flux (LE) and their ratio (the Bowen ratio, Bo) at the study ecosystem were relatively invariant compared to other tropical rainforests. The average daily LE across the calendar year tended to be higher at MY-MLM (11 MJ m -2 day -1) than most other tropical rainforest ecosystems in the FLUXNET2015 database. Results demonstrate important differences in the seasonal patterns in water and energy exchange in tropical rainforest ecosystems that need to be captured by models to understand how ongoing changes in tropical rainforest extent impact the global climate system.Item Thermal insulation versus capacitance: a comparison of shading and hyporheic exchange on daily and annual stream temperature patterns(Montana State University - Bozeman, College of Agriculture, 2017) Fogg, Sarah Kathleen; Chairperson, Graduate Committee: Geoffrey Poole; Geoffrey C. Poole, AnnMarie Reinhold and Scott J. O'Daniel were co-authors of the article, 'Thermal insulation versus capacitance: a comparison of shade and hyporheic exchange on daily and annual stream temperature cycles' submitted to the journal 'Water resources research' which is contained within this thesis.Channel shading and hyporheic exchange both effect daily and annual stream temperature cycles. In streams with thermal regimes that are too warm to support native biota, increasing shading or hyporheic exchange have largely been thought of as interchangeable management strategies because they influence summertime stream channel temperatures in similar ways. But, shading and hyporheic exchange operate via different mechanisms and influence stream temperature differently at differently times of the year. To understand daily and seasonal differences of shading and hyporheic exchange on stream channel temperature we used a process-based heat-budget model of channel temperature. Our model incorporates stream channel-atmospheric energy exchanges and a novel channel-subsurface heat exchange model that more appropriately represents the effects of hyporheic residence time distributions. We used our model to conduct an in silico experiment where we vary shading and hyporheic exchange on the same stream reach. In summer, the cooling and damping of channel temperatures associated with an expansive, coarse-grained hyporheic zone were similar to shading effects. However, the differences between shading and hyporheic exchange effects were most pronounced in the winter when channel warming associated with hyporheic exchange was substantially greater than warming associated with shade. By interpreting the changes in heat fluxes between shading a stream and adding hyporheic exchange, we find that shading acts as a thermal insulator and hyporheic exchange acts as a thermal capacitor. Our results show that shading and hyporheic exchange can have similar and differently effects on stream channel temperatures depending on what part of the year the effects are investigated, which has important management and modeling implications. Geography and geomorphic context of a stream are important considerations when choosing shading or hyporheic exchange for thermal restoration. In bedrock-confined streams that historically had closed canopies, shading has the greatest potential to reduce summer temperatures while restoration of hyporheic restoration is impractical in these systems. In contrast, in large, coarse-grained alluvial stream reaches, where riparian vegetation is historically sparse, restoring hyporheic influences has the greatest potential for reducing summer temperatures while increasing streamside shading is likely unattainable.Item Soil temperature and soil moisture characteristics for several habitat types of Montana and Idaho(Montana State University - Bozeman, College of Agriculture, 1996) Sirucek, DeanItem The influence of ambient temperature on the susceptibility of Aedes aegypti to the pyrethroid insecticide Permethrin(Montana State University - Bozeman, College of Agriculture, 2014) Whiten, Shavonn Reezale; Chairperson, Graduate Committee: Robert K. D. PetersonInsecticides are the most common management strategy used for the control of mosquitoes. Changes in ambient temperature can alter the toxicity of insecticides to ectothermic organisms. Studies show organophosphate insecticides exhibit a positive correlation between ambient temperature and mortality for many insect species, and carbamate insecticides exhibit a slightly negative to positive correlation between ambient temperature and mortality. Pyrethroid insecticides exhibit a distinctly negative correlation between increasing ambient temperature and mortality for insects. However, this relationship has not been systematically studied for adult mosquitoes. Therefore, we examined the influence of temperature on the susceptibility of adult Aedes aegypti (Diptera: Culicidae) when exposed to permethrin. Dose-response probit regression lines and the median lethal concentration, LC50, were estimated for adult Ae. aegypti when exposed to eight concentrations of permethrin (ranging from 0.06 - 0.58 ng/cm 2) at each of the following temperatures, 16, 23, 26, 30, 32, and 34 °C for 24 hours in bottle assays. The estimated LC50 for each temperature was 0.25, 0.34, 0.36, 0.48, 0.26, 0.31 ng/cm 2, respectively. Results indicated a negative correlation between temperature and mortality from 16 °C to 30 °C, a positive correlation between temperature and mortality from 30 °C to 32 °C, and a negative correlation between temperature and mortality from 32 °C to 34 °C. Most important, the largest negative temperature coefficient (-1.92) was observed at 30 °C. If mosquito populations are expanding in space and time because of increased temperatures due to global warming and cannot be managed as effectively with pyrethroids, the spread of mosquito-borne diseases may pose considerable risk to public health.Item Using a spatially explicit stream temperature model to assess potential effects of climate warming on bull trout habitats(Montana State University - Bozeman, College of Agriculture, 2012) Jones, Leslie Anne; Chairperson, Graduate Committee: Lucy Marshall.; Clint C. Muhlfeld, Lucy A. Marshall, Brian L. McGlynn and Jeffrey L. Kershner were co-authors of the article, 'Using a spatially explicit stream temperature model to assess potential effects of climate warming on bull trout habitats' in the journal 'Canadian journal of fisheries and aquatic sciences' which is contained within this thesis.As the Flathead River Basin (FRB) undergoes change caused by a warming climate, scientific studies evaluating habitats and species most susceptible to the impacts of climate change will become increasingly important. Here, we seek to identify biologically meaningful physiological thresholds of bull trout in the FRB by modeling stream temperature and using the model as a tool to predict thermal changes caused by a warming climate. Specifically, we developed a spatially explicit stream temperature model to quantify and explore the potential range of thermal warming effects, using the case study of bull trout populations in the FRB. Our objectives were to: i) compare spatial and non-spatial statistical models used to predict stream temperatures throughout the FRB; ii) apply a spatially explicit model to estimate thermal thresholds for spawning and rearing and foraging migrating and overwintering bull trout habitats; iii) predict thermal changes under a range of future climate scenarios; and iv) investigate model behavior and inform future research decisions. Development of spatially explicit models, such as the one described here, will create an ideal opportunity to build collaborative relationships through research so that scientists can further understand how climate change will impact freshwater aquatic ecosystems. In particular, model results may be used to perform ecosystem assessments; inform future research needs; and develop conservation plans with broad applications that reach beyond the Flathead system.