Theses and Dissertations at Montana State University (MSU)
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/732
Browse
4 results
Search Results
Item Thermal energy storage with sensible heat in an air-alumina packed bed using axial flow, axial flow with layers and radial flow(Montana State University - Bozeman, College of Engineering, 2020) Al-Azawii, Mohammad Mahdie Saleh; Chairperson, Graduate Committee: Ryan Anderson; Carter Theade, Megan Danczyk, Erick Johnson and Ryan Anderson were co-authors of the article, 'Experimental study on cyclic behavior of thermal energy storage in an air-alumina packed bed' published in the journal 'Journal of energy storage' which is contained within this dissertation.; Carter Theade, Pablo Bueno and Ryan Anderson were co-authors of the article, 'Experimental study of layered thermal energy storage in an air-alumina packed bed using axial pipe injections' in the journal 'Applied energy' which is contained within this dissertation.; Duncan Jacobsen, Pablo Bueno and Ryan Anderson were co-authors of the article, 'Experimental study of thermal behavior during charging in thermal energy storage packed bed using radial pipe' in the journal 'Applied thermal engineering' which is contained within this dissertation.Thermal behavior in a packed bed thermal energy storage (TES) system is studied experimentally. TES systems are a promising solution to integrate renewable energy sources such as solar energy. The performance of such systems can be affected by different variables such as storage material size/type, pressure, temperature, heat transfer fluid (HTF), storage type (sensible/latent heat), and flow rate. Although these variables have been studied in literature, the resulting thermal dispersion and heat losses to the environment have been considered in few studies. This thesis studies the thermal behavior of an air-alumina TES packed bed focusing on dispersion and heat losses to quantify the thermal performance. Reducing their effects can improve the thermocline and thus thermal efficiency. The research efforts in this work quantify these effects and provide two new methods to reduce thermal dispersion and increase exergetic efficiency. Three configurations were considered in the present study. In the first configuration, a traditional packed bed is used focusing on performance for multiple partial cycles. This configuration quantified the thermal performance and served as a basis to compare the results from the other configurations. Dispersion effects were found to accumulate before a steady state was achieved during cycling. In the second and third configurations, novel pipe injection techniques were used to charge/discharge the bed. First, the normal bed is divided into layers via inserting pipes along the bed's axial length, focusing on a full charge-discharge cycle. Results show that exergy efficiency increases with flow rate and number of layers. The thermocline improved and dispersion losses decreased with number of layers. Second, a perforated pipe to facilitate radial flow was inserted at the center of the bed along the axial length to heat the bed. Radial charging shows higher charging efficiency compared to normal axial charging. Pipe injection is a novel method and a promising technique that improves the thermal performance of a lab scale storage bed, especially the layering method. Radial injection warrants more investigation to quantify its performance in thermal cycles.Item Aluminate spinels for use as catalyst enhancement of solid oxide fuel cells(Montana State University - Bozeman, College of Engineering, 2019) Zachariasen, Marley Sarria; Chairperson, Graduate Committee: Stephen W. SofieThe growing necessity to find clean, efficient power sources has led to the advancement of technology in various fields of renewable energy. The field of electrochemical energy conversion, better known has Hydrogen Fuel Cell energy, has shown promise in replacing fossil fuels. This technology is fuel flexible, emits no harmful products, and generates power at efficiencies double or triple that of the Carnot combustion cycle widely used in automotive propulsion and large scale combustion power generation. However, the power production is limited by the short life expectancy of the components used to convert the chemical energy of the fuel into an electrical current. Two mechanisms work simultaneously during fuel cell operation to degrade the anodic electrode of the cell. The coarsening of the catalyst metal particles reduces the total active area of the anode while contaminants from the fuel deposit on the anodes remaining active areas, blocking fuel from the locations where the reaction takes place. Recent studies have shown that doping the industry standard fuel cell anode, Ni/YSZ, with a compound known as Aluminum Titanate (ALT) increases the overall resiliency of the cell. When heat-treated, ALT disassociates in to aluminum and titanium oxides which are then able to go into solution with the material components of the anode. These new secondary phases were shown to increase the strength and overall power output of the cell while decreasing the rate at which the catalyst coarsens. The electrochemical enhancements were attributed to the aluminum based secondary phase, known as nickel aluminate, a spinel structured compound which undergoes unusual reduction and catalytic transport kinetics. This work assesses the viability of transferring these enhancement effects to various other cermet anode systems by individually exchanging the ceramic ion conductor and metal electrocatalyst. The electrochemical performance and degradation, as well as mechanical properties, were evaluated for Ni/GDC anodes doped with ALT and alumina. In addition, synthesis and reduction behavior of cobalt and copper aluminate spinels were analyzed for similarities with nickel aluminate.Item Acoustic propagation modeling for marine hydrokinetic applications(Montana State University - Bozeman, College of Engineering, 2016) Johnson, Charles Nathan; Chairperson, Graduate Committee: Erick JohnsonThe combination of riverine, tidal, and wave energy have the potential to supply over one third of the United States' annual electricity demand [1]. However, in order to deploy and test prototypes and commercial installations, marine hydrokinetic (MHK) devices must meet strict regulatory guidelines. These regulations mandate the maximum amount of noise that can be generated and sets particular thresholds for determining disturbance and injury caused by noise. In the absence of measured levels from in-situ deployments, a model for predicting the propagation of a MHK source in a real hydroacoustic environment needs to be established. An accurate model for predicting the propagation of a MHK source(s) in a real-life hydro-acoustic environment has been established. This model will help promote the growth and viability of marine, water, and hydrokinetic energy by confidently assuring federal regulations are meet and harmful impacts to marine fish and wildlife are minimal. A 3D finite-difference solution to the governing velocity-pressure equations is presented and offers advantages over other acoustic propagation techniques for MHK applications as spatially varying sound speeds, bathymetry, and bed composition that form complex 3D interactions can be modeled. This solution method also allows for the inclusion of complex MHK sound spectra from turbines and/or arrays of turbines. A number of different cases for hydro-acoustic environments have been validated by both analytical and numerical results from canonical and benchmark problems. Several of these key validation cases are presented in order to show the applicability and viability of a finite difference numerical implementation code for predicting acoustic propagation in a hydro environment. With the model successfully validated for hydro-acoustic environments, more complex and realistic MHK sources from turbines and/or arrays can be modeled. A systematic investigation of MHK relevant scenarios is presented with increasing complexity including a single- and multi- source investigation, a random phase change study, and a hydro-acoustic model integrationItem Bathymetric effects on marine hydrokinetic array performance(Montana State University - Bozeman, College of Engineering, 2015) Peebles, Garrett William; Chairperson, Graduate Committee: Erick JohnsonApproximately 16% of the globally generated electricity comes from conventional hydropower installations. Recent technological improvements in marine hydrokinetics (MHK), and a global demand for increased renewable energy, are enabling this technology to become a major contributor in the global energy market. MHK devices convert the kinetic energy, or energy of motion, from waves or water currents into electricity that is then transferred to the electrical grid. Wave energy converters (WECs) capitalize on the oscillatory motion of ocean waves, while current energy converters (CECs) use river, tidal, or ocean currents to generate electricity and often resemble wind turbines. Unlike wind, water currents are less intermittent, and, in the case of tidal currents, highly predictable. At present scales, individual CEC and WEC devices alone are not powerful enough to make hydrokinetic power economically feasible. Therefore, deployment of arrays of marine hydrokinetic devices is the most cost-effective method for these devices to become a major contributor in the energy market. In addition to device design and operational conditions, how these devices are deployed within a site determines their potential for power generation. The power generated depends upon interdevice proximity, where it is generally assumed more electricity is generated as the spacing between each device increases. However, most array performance studies of current-energy converters do not consider bed topography and are either inside smooth walled channels or deep, open waters. The research presented here explores the impact of site bathymetry on array performance since each deployment location is likely to have a significant impact on the optimality of an array layout. It is first shown that without boundary constraints the performance of an array does improve as the inter-device spacing is increased. Uniquely though, the normalized power and loading on an array is not transferable from an unconstrained domain to simple, sloping beds. The effects of this demonstrate the need to consider the topography of real world locations for general array designs.