Theses and Dissertations at Montana State University (MSU)
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/732
Browse
2 results
Search Results
Item Nanocomposites : a study of theoretical micromechanical behavior using finite element analysis(Montana State University - Bozeman, College of Engineering, 2009) Milliren, Eric Carlton; Chairperson, Graduate Committee: Christopher H. M. JenkinsCurrent research in nanotechnology has produced an increasing number of possibilities for advanced materials. Among those materials with potential advanced mechanical properties are fiber-reinforced composite laminates that utilize nanoscale fiber diameters. Through a combination of studying classic micromechanical models and modern computer-aided finite element analysis (FEA), the advantages for utilizing these nanofibers in advanced structural applications, such as space mirror backings, was investigated. The approach for modeling these composite structures was that of a Representative Volume Element (RVE). Using the program ABAQUS/CAE, a RVE was created with the goals of accurately comparing to the shear lag theory, effectively incorporating "interphase" zones that bond the constituents, and demonstrating effects of down-scaling fiber diameter. In this thesis, the progression of the ABAQUS model is thoroughly covered as it developed into a verified model correlating with the shear lag theory. The model produced was capable of utilizing interphase if desired, and was capable of off-axis loading scenarios. A MathCAD program was written in order to employ the published theoretical techniques, which were then compared to the FEA results for verification. The FEA model was found to work well in conjunction with the theory explored using MathCAD, after which the nanofiber FEA model showed some clear advantages over a conventional-sized model, specifically an increase in strength of the composite RVE. Finally, it was determined that the interfacial bonding strength plays a large role in the structure of the interphase zone, and thus the overall strength of the composite.Item Effect of fiber diameter on stress transfer and interfacial damage in fiber reinforced composites(Montana State University - Bozeman, College of Engineering, 2011) Peterson, William Matthew; Chairperson, Graduate Committee: Christopher H. M. JenkinsIn this work, the effect of fiber diameter upon the strength, stiffness, and damage tolerance of a fiber-reinforced polymer composite laminate structure was investigated. Three cases were considered, in which the fiber diameters of 16, 8, and 4 microns were used. A fiber volume fraction of 32% was assumed in each model. Micromechanical, shear-lag, and progressive damage analyses were performed using finite element models of the structure, which was subjected to tensile loading in the fiber direction. Fiber-matrix load transfer efficiencies and the stress distributions near broken fibers within the composite structure were investigated and results compared for each fiber diameter. In addition, the effect of fiber diameter upon the initiation and evolution of fiber-matrix interfacial damage and debonding was studied using cohesive interface elements. For a specified volume fraction and load condition, as the fiber diameter was decreased the load transfer efficiency and effective stiffness of the broken fiber model increased. Also, as the fiber diameter was decreased, the initiation of damage at the fiber-matrix interface occurred at greater stresses and the subsequent growth of damage was less extensive. These results indicate that, for the same total mass, the performance and damage tolerance of composite materials may be enhanced simply by using smaller diameter fibers.