Theses and Dissertations at Montana State University (MSU)

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/732

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    High temperature chlorosilane corrosion of iron and AISI 316L stainless steel
    (Montana State University - Bozeman, College of Engineering, 2016) Aller, Joshua Loren; Chairperson, Graduate Committee: Paul E. Gannon
    Chlorosilane gas streams are used at high temperatures (>500°C) throughout the semiconductor, polycrystalline silicon, and fumed silica industries, primarily as a way to refine, deposit, and produce silicon and silicon containing materials. The presence of both chlorine and silicon in chlorosilane species creates unique corrosion environments due to the ability of many metals to form both metal-chlorides and metal-silicides, and it is further complicated by the fact that many metal-chlorides are volatile at high-temperatures while metal-silicides are generally stable. To withstand the uniquely corrosive environments, expensive alloys are often utilized, which increases the cost of final products. This work focuses on the corrosion behavior of iron, the primary component of low-cost alloys, and AISI 316L, a common low-cost stainless steel, in environments representative of industrial processes. The experiments were conducted using a customized high temperature chlorosilane corrosion system that exposed samples to an atmospheric pressure, high temperature, chlorosilane environment with variable input amounts of hydrogen, silicon tetrachloride, and hydrogen chloride plus the option of embedding samples in silicon during the exposure. Pre and post exposure sample analysis including scanning electron microscopy, x-ray diffraction, energy dispersive x-ray spectroscopy, and gravimetric analysis showed the surface corrosion products varied depending on the time, temperature, and environment that the samples were exposed to. Most commonly, a volatile chloride product formed first, followed by a stratified metal silicide layer. The chlorine and silicon activities in the corrosion environment were changed independently and were found to significantly alter the corrosion behavior; a phenomenon supported by computational thermodynamic equilibrium simulations. It was found that in comparable environments, the stainless steel corroded significantly less than the pure iron. This is likely due to the alloying elements present in stainless steel that promote formation of other stable silicides. Mechanistic models were developed to describe the formation and evolution of metal silicide and/or metal chloride surface corrosion products in chlorosilane environments. These models will help inform materials selection and/or support process development for next-generation chlorosilane-based production and deposition systems. The implementation of low cost materials of construction in these systems could lower the cost of final products in these industries.
  • Thumbnail Image
    Item
    Characterization and optimization of direct drive friction welding parameters in small stainless steel tube welds
    (Montana State University - Bozeman, College of Engineering, 2013) Adams, Alex Jackson; Chairperson, Graduate Committee: David A. Miller
    Rotational friction welding is a common joining process used to join cylindrical metal components. Typically, one piece is rotated and a secondary piece is held rigid. The two samples are then forced together in a controlled manner, and the resulting friction generates enough heat to weld the two pieces. This process was characterized and optimized for 304 Stainless Steel tubes with a .317 cm (.125 in) outer diameter and .14 cm (.055 in) inner diameter. The goal was to characterize and optimize parameters around a weld with no leak, strong ultimate tensile strength, and proper through-hole integrity. Also, solid bars were welded to some tubes to analyze a capped system. Key parameters to the process that were monitored and/or controlled include rotational speed, applied force, temperature, duration, and material upset. Often times the applied force is divided into two steps. A lower force is applied during heating (friction force), and a larger force is applied once rotation stops (forging force). The material upset, maximum temperature, and forging fore were the primary controlling variables in this study. Other parameters were held constant. A testing setup was built to analyze these factors. Modifications were made to a three axis mill to perform friction welding in a controlled environment. Then, tests were run to understand the effects each parameter had on weld quality. Welds with an upset greater than .1 cm held a pressure at a much higher success rate than welds with lower upsets. In general, the forging force was shown to have a large positive impact on ultimate tensile force. The integrity of the through-hole was compromised in many of the tube to tube tests. Several welds were post-drilled to recreate the through-hole. Tests with this done held a pressure 66.67% of the time. It was found that successful welding can be accomplished with this process, and different adjustments to testing procedures can maximize different qualities in the weld.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.