Theses and Dissertations at Montana State University (MSU)

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/732

Browse

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Item
    Thermalization and exciton localization in 2D semiconductors
    (Montana State University - Bozeman, College of Letters & Science, 2023) Strasbourg, Matthew Christopher; Chairperson, Graduate Committee: Nick Borys; This is a manuscript style paper that includes co-authored chapters.
    2D semiconductors are a promising class of materials to investigate for applications in the next generation of photonic devices. They can be used to generate quantum light and also exhibit correlated many-body phenomena. Many of the novel optoelectronic properties of 2D semiconductors are associated with strongly-bound hydrogen-like states known as excitons. Excitons in 2D semiconductors have binding energies on the order of 100s of meV and are stable at room temperature. At low temperatures, higher-order excitonic states such as charged excitons and biexcitons--multiple-bound excitons that are like hydrogen molecules-- and localized excitons that emit quantum light are also observed. Whether excited optically or electronically, a diversity of high-energy excitons and free carriers are produced directly after excitation. The relaxation and thermalization of these initial states influence the formation of excitons, biexcitons, and localized excitons. Here, I present work that (i) investigates the thermalization of excited states in a prototypical 2D semiconductor, monolayer (1L-) WSe2, and reports the discovery that the generation of charged biexcitons is enhanced with increasing photoexcitation energy, (ii) shows the emergence of quantum emitters (QEs) in a new 2D QE platform: 1L-WSe2 nanowrinkle arrays induced by Au nano stressors, and (iii) uses a novel method to classify the excited-state dynamics of 2D QEs and differentiate emitter populations. A suite of low-temperature energy- and time- resolved optical spectroscopies are used to conduct this work. This work shows how excited state thermalization affects the formation of exciton and biexcitons and investigates the optical properties of an emergent class of 2D quantum light emitters.
  • Thumbnail Image
    Item
    Novel models and observations of energetic events in the solar transition region
    (Montana State University - Bozeman, College of Letters & Science, 2021) Parker, Jacob Douglas; Chairperson, Graduate Committee: Charles C. Kankelborg; Dana Longcope was a co-author of the article, 'Modeling a propagating sawtooth flare ribbon as a tearing mode in the presence of velocity shear' in the journal 'Astrophysical journal' which is contained within this dissertation.; Charles Kankelborg was a co-author of the article, 'Determining the spectral content of MOSES images' submitted to the journal 'Astrophysical journal' which is contained within this dissertation.; Roy Smart, Charles Kankelborg, Amy Winebarger and Nelson Goldsworth were co-authors of the article, 'First flight of the EUV snapshot imaging spectrograph (ESIS)' submitted to the journal 'Astrophysical journal' which is contained within this dissertation.
    The solar atmosphere is an energetic and violent place capable of producing eruptions that affect us on earth. In order to better understand these events, so that we might improve out ability to model and predict them, we observe the sun from space to diagnose the local plasma conditions and track its evolution. The transition region, a thin region of the solar atmosphere separating the chromosphere from the corona, is where the solar atmosphere transitions rapidly from ten thousand, to one million kelvin and is therefore thought to play an important roll in the transfer of mass and energy to the hot corona. The sun's magnetic field, and magnetic reconnection, are thought to contribute to the increased temperature of the corona, since the cooler lower solar atmosphere cannot heat it via thermal conduction or convection. Explosive events, small solar eruptions likely driven by magnetic reconnection, are frequent in the transition region, making it an attractive area of the atmosphere to study and gather information on the processes. Using Computed Tomography Imaging Spectrographs (CTIS), capable of measuring spectral line profiles over a wide fields of view at every exposure, we find many eruptive events in the transition region to be spatially complex, three dimensional, and to evolve on rapid timescales. This demonstrates the utility of, and need to continue developing, CTIS style instruments for solar study since they provide a more complete picture of solar events, allowing us to improve our understanding of our closest star.
  • Thumbnail Image
    Item
    Exploration of rare-earth ion transitions and host materials for spectral hole burning applications and quantum information science
    (Montana State University - Bozeman, College of Letters & Science, 2021) Marsh, Aaron Daniel; Chairperson, Graduate Committee: Rufus L. Cone
    Due to their capacity for generating and manipulating light, the rare-earths are a foundational part of many cutting-edge technologies, ranging from lighting to quantum communications. Optical applications based on rare-earth doped materials are restricted to their transition energies. There are large bands, including the telecom window, where available rare-earth transitions typically have poor properties at liquid helium temperatures. The limitations are determined by the fundamental interactions between rare-earth ions and their host materials; comprehension of the interactions can be leveraged to significantly improve the properties of rare-earth quantum states. Three unexplored rare-earth optical transitions are investigated in this thesis: the Tm 3+ 3 H6<-->3 F3 at ~690 nm, the Pr 3+ 3 H 4<-->3 F 3 at ~1584 nm, and the Tm 3+ 3 F4<-->3 H 4 at ~1451 nm. The first transition suppresses non-radiative relaxation through engineering of the host material phonon spectrum. The 3 F 3 lifetime is extended to ~100 microsecond in Tm 3+ :KPb 2Br 5. The material Tm 3+:LaF 3 is also prepared for high-contrast spectral filtering in ultrasound-optical medical imaging sensitive to blood oxygenation at ~690 nm. Narrow 380 kHz holes are burned; simulations of hole burning indicate that ~60 dB of filtering contrast at ~3MHz is possible. Likewise, non-radiative relaxation is suppressed on the Pr 3+ transition at ~1584 nm in the low-phonon energy host RbPb 2Br 5. Four sites are revealed, with ~2-5 GHz spectrally resolved inhomogeneous broadenings, ~0.5-1 ms T 1 lifetimes, pseudoquadrupole level storage, and ~750 ns coherence times. This material is discussed for use as an L-band quantum memory. The excited state transition of Tm 3+ at ~1451 nm is then explored for quantum memories. High-resolution spectroscopy finds ~1 GHz inhomogeneous broadenings, ~6 ms lifetimes, and laser-limited ~30 MHz holes are burned. Techniques for measuring the properties of excited state transitions are described. Throughout, experimental methods and applications demonstrate the close relationship between lanthanide research and devices. Rare-earth doped crystals are used as an all-optical, high-resolution sensor package for characterizing cryostats in situ, and spectral hole burning characterizes laser performance as a real-time, ~1 MHz resolution spectrum analyzer. The exploration of rare-earth transitions is found to enable new research and new applications, with many other transitions yet to be explored.
  • Thumbnail Image
    Item
    Magnetic and thermal properties of low-dimensional single-crystalline transition-metal antimonates and tantalates
    (Montana State University - Bozeman, College of Letters & Science, 2017) Christian, Aaron Brandon; Chairperson, Graduate Committee: John J. Neumeier
    This work contributes to the study of magnetic interactions in the low-dimensional antiferromagnets M(Sb,Ta) 2O 6, where M is a transition metal. By virtue of the trirutile structure, M-O-O-M chains propagate along [110] at z = 0 and [11overline0] at z = 1=2 of the unit cell. These chains are separated along [001] by sheets of weakly-interacting diamagnetic ions. The spin-exchange coupling perpendicular to the chains is weak, permitting the low-dimensional classification. Single crystals have been grown using chemical vapor deposition and the floating zone method. Magnetization, in-field heat capacity, and high-resolution thermal expansion measurements have been performed along various axes, revealing significant anisotropy due to the peculiar magnetic structures and low dimensionality. The Neel temperature, TN, at which long-range order occurs is found to be unstable against the application of magnetic field above 2 T. Large fields tend to lower TN of the set of moments with projections along the applied field. Moments which are aligned perpendicular to the field are significantly less affected. This can lead to the formation of a secondary peak in heat capacity when magnetic field is along either [110] or [11overline0]. The change in heat capacity at the location of the newly formed peak means there is a change in entropy, which depends upon the direction of applied field with respect to the magnetic moments. Consequently, an anisotropic magnetocaloric effect arises due to the unique magnetic structure. The anisotropic nature of this effect has potential applications in magnetic refrigeration.
  • Thumbnail Image
    Item
    Cooling of neutron stars with quark core
    (Montana State University - Bozeman, College of Letters & Science, 2012) Beisenkhanova, Neilya; Chairperson, Graduate Committee: Sachiko Tsuruta
    Ordinary neutron stars can undergo two possible scenarios of cooling: with conventional 'standard' neutrino emission processes or with faster 'non-standard' processes. For both of these scenarios various mechanisms have been proposed. As possible nonstandard options, previous detailed studies already explored direct URCA processes involving hyperon-mixed matter and pion condensates. In the current research we explore another possible non-standard scenario - quark cooling where a hybrid star with a quark core undergoes direct URCA cooling. We used the exact evolutionary code originally constructed by Nomoto and Tsuruta (1987) which was modified for quark cooling. We chose a model with a medium equation of state TNI 6, where transition from neutron to quark matter takes place at a critical density of four times the nuclear density. Our results show that low mass stars undergo standard cooling while heavier stars, with mass larger than about 1.45 mass compared to the sun, possess a central core where nonstandard accelerating quark cooling is in operation but it can be suppressed significantly due to density-dependent superfluid property. We showed that our quark cooling scenario can be consistent with the observational data on neutron star temperatures. An important result is that we obtained more realistic cooling behavior than obtained earlier, by adopting a density-dependent superfluid energy gap model, instead of constant gaps employed earlier.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.