Theses and Dissertations at Montana State University (MSU)
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/732
Browse
66 results
Search Results
Item Characterization and testing of reduced height (RHT) hypomorphs in durum and spring wheat(Montana State University - Bozeman, College of Agriculture, 2023) Ugrin, Josey Mackinsey; Chairperson, Graduate Committee: Michael J. GirouxThe Reduced Height (Rht) gene in wheat (Triticum aestivum L.) increases yield by partitioning less nutrients to stem elongation and more towards spike development. In hexaploid wheat, the mutations Rht-B1b and Rht-D1b, create high-yielding semi-dwarf varieties. While Rht-B1b and Rht-D1b have been widely adopted due to their ability to increase yield, they also have drawbacks such as smaller seed size and lower protein content. Furthermore, tetraploid durum wheat (Triticum. turgidum L), Rht-B1b creates plants that are shorter than in hexaploid wheat under Northern Great Plains growing conditions. This project aimed to further characterize Rht and to develop a plant height intermediate between current standard-height and semi-dwarf varieties to increase yield in both durum and spring wheat. To create novel Rht alleles, seeds were mutagenized with Ethyl-methanesulfonate (EMS) and mutations were identified. Near-isogenic lines (NILS) were developed for the two Rht-A1 alleles and Rht-B1b-E529K alleles in semi-dwarf (Rht-B1b) and standard height (Rht-B1a) varieties in durum. In spring wheat, NILs were developed for eight Rht-A1 alleles in two high-yielding Montana varieties. These NILS were planted in field trials and plant height and grain traits were measured. Four novel mutations, Rht-A1-E63K, Rht-A1-Q6*, Rht-A1-V55M, and Rht-A1-53T in spring wheat and two mutations in durum, Rht-B1b-E529K and Rht-A1-S50F all had either significantly changed height or grain traits. Along with developing and testing Rht alleles for field trait improvement, we did a study to characterize an Rht stop-codon dosage response in wheat. Previous studies in rice and barley have indicated that a lack of the functional SLR1/SLN1 gene respectively, results in an abnormal growth response characterized by taller height and slender appearance. This effect on Rht function has yet to be tested in wheat. Rht nonsense alleles were created by screening an EMS treated population created using seed of a standard-height Montana variety. We combined mutations creating lines homozygous for single, double, or triple mutations. In field trials, Rht triple mutants exhibited a slender, elongated phenotype with strike heads similar to SLN1 mutants in barley. Differences in height varied for the other crosses but did trend towards increased height with increased Rht-stop mutation dosage.Item Genetics of seed dormancy in wheat and barley(Montana State University - Bozeman, College of Agriculture, 2020) Vetch, Justin Michael; Chairperson, Graduate Committee: Michael J. Giroux; Robert N. Stougaard, John M. Martin and Michael J. Giroux were co-authors of the article, 'Revealing the genetic mechanisms of preharvest sprouting' in the journal 'Plant science' which is contained within this dissertation.; Robert N. Stougaard, John M. Martin and Michael J. Giroux were co-authors of the article, 'Allelic impacts of TaPHS1, TaMKK3, and Vp1B3 on preharvest sprouting of northern Great Plains winter wheats' in the journal 'Crop science' which is contained within this dissertation.; Jason G. Walling, Jamie D. Sherman, John M. Martin and Michael J. Giroux were co-authors of the article, 'Mutations in the HvMKK3 AND HvAlaAT1 genes affect barley pre-harvest sprouting and after-ripened seed dormancy' in the journal 'Crop science' which is contained within this dissertation.; Philip L. Bruckner, John M. Martin and Michael J. Giroux were co-authors of the article, 'TAMFT homeologs are associated with preharvest sprouting winter wheat' submitted to the journal ''Crop science' which is contained within this dissertation.Montana producers have many biotic and abiotic stresses to contend with. One of interest to avoid is preharvest sprouting (PHS), which is the precocious germination of grains before harvest. PHS affected grain is discounted at the elevator, resulting in grain being unsuitable for many foods and direct losses to producers. PHS is not widespread every year in Montana but in some years causes large economic loss. Although PHS is a response to environmental cues it is largely controlled by genetics. Genes that control seed dormancy are the most likely candidate genes for PHS resistance and the series of studies presented in this dissertation examine the impact of several genes upon small grain PHS susceptibility. The studies used several methods to assess PHS susceptibility and determine which alleles of individual genes were present. The methods included seed dormancy screening assays, alpha amylase enzyme activity analysis, falling numbers analysis, genotyping by direct sequencing and via use of various markers, RNA-sequencing, and gene expression analysis. The first study served as a PHS susceptibility survey and provides PHS tolerance information on MT grown wheat varieties. This study also found that of the three most reported PHS associated genes (TaMFT 3A, TaMKK3 4A, and TaVp1 3B), only TaMFT 3A was associated with PHS in Montana winter wheats, even though the previously reported variation was observed in all three genes. The second study looked at PHS susceptibility among current and historically grown barley varieties. It was found that malt varieties vary greatly in their susceptibility to PHS with the top grown AMBA recommended varieties among the most susceptible. It was also found that a previously unstudied mutation in the HvMKK3 gene is associated with PHS susceptibility. Interestingly, HvMKK3 and HvAlaAT1 affect dormancy at different time points in grain maturity indicating dormancy may be tailored to a specific timeframe (high dormancy at harvest with rapid decay of dormancy after harvest). The final study revisited winter wheat PHS and found that the TaMFT 3B and 3D homeologs are associated with PHS which has not been shown to date.Item Creating rust resistance in wheat via modification of host genes(Montana State University - Bozeman, College of Agriculture, 2020) Nyamesorto, Bernard Mensah; Chairperson, Graduate Committee: Li Huang; Hongtao Zhang and Li Huang were co-authors of the article, 'Wheat MYC4 transcriptional factor gene modification enhanced host resistance against rust pathogens' which is contained within this dissertation.; Dissertation contains an article of which Bernard Mensah Nyamesorto is not the main author.A major challenge to resistance breeding in bread wheat (Triticum aestivum L.) is limited genetic diversity. The traditional approach to combating this problem is introgression of resistant genes from other closely related species into elite but susceptible cultivars. This strategy is often associated with linkage drag. Moreover, pathogens continue to evolve into different and more virulent forms (races) that overcome these resistant genes in a process called resistance breakdown. A typical example is the outbreak of Ug99, a novel African stem rust pathotype that exhibited virulence against numerous stem rust resistance genes. Creating resistance within wheat's own genome is a panacea to the challenges surrounding the traditional method. Biotrophic plant pathogens such as wheat rusts are known to manipulate host genes as a means of overcoming host defense response and acquiring nutrients. Central to wheat-rust interactions is highly sophisticated immune repertoire consisting of diverse signal perception and intracellular signaling pathways which are regulated by transcriptional regulators and co-factors. Unfortunately, pathogen effector proteins also take advantage of host plant genes (so called pathogen susceptible host genes) including transcriptional mechanisms. Hence editing the genes targeted by these pathogens in wheat is a valuable means of creating host resistance that has been neglected. We conducted these studies to identify host genes targeted by rust pathogens through bioinformatics approaches including transcriptome analysis which showed that wheat NPR1 genes (transcriptional regulator) and MYC4 and MY21 (transcription factors) are negatively involved compatible wheat-rust interactions. Subsequently, when these genes were down regulated in susceptible Chinese Spring using Barley Mosaic Virus Induced Gene Silencing (BSMV) assay, the silenced plants became resistant to rust pathogens. Loss-of-function mutations created in these homeologs via Ethyl methanesulfonate mutagenesis conferred resistant to rust pathogens. Consequently, this study led to the development of new rust resistance germplasms.Item Genetic dissection of grain yield and yield component traits in hexaploid spring wheat(Montana State University - Bozeman, College of Agriculture, 2020) Jones, Brittney Hannah; Chairperson, Graduate Committee: Michael J. Giroux; Nancy K. Blake, Hwa-Young Heo, Jay R. Kalous, John M. Martin, Jessica A. Torrion and Luther E. Talbert were co-authors of the article, 'Improving hexaploid spring wheat by introgression of alleles for yield component traits from durum wheat' in the journal 'Crop science' which is contained within this dissertation.; Nancy K. Blake, Hwa-Young Heo, Jay R. Kalous, John M. Martin, Deanna L. Nash, Jessica A. Torrion and Luther E. Talbert were co-authors of the article, 'Impact of yield component alleles from durum wheat on end-use quality of spring wheat' in the journal 'Cereal chemistry ' which is contained within this dissertation.; Nancy K. Blake, Hwa-Young Heo, John M. Martin, Jessica A. Torrion and Luther E. Talbert were co-authors of the article, 'Allelic response of yield component traits to resource availability in spring wheat' in the journal 'Theoretical and applied genetics' which is contained within this dissertation.Hexaploid wheat accounts for 30% of global grain production, ranking in the top three major food crop species along with maize and rice. Grain yield from hexaploid wheat is an important agronomic consideration for sustainable agriculture. As the human population continues to grow and the amount of farmable land decreases it is imperative that a focus be placed on improving grain yield performance. Grain yield is a quantitative trait and as such improved performance is largely influenced by genetic variation, environment and genotype x environment interactions. Due to the quantitative nature of grain yield the mechanisms of genetic control are largely unknown. The purpose of the presented research was to genetically dissect grain yield and yield component traits in hexaploid spring wheat grown in Montana in order to leverage new understanding to improve Montana germplasm and future breeding programs. This investigation included three research aims: (i) to determine the genetic impact of introgressed durum yield component alleles on hexaploid spring wheat agronomic and end-use quality performance (Chapters 2 and 3); (ii) investigate how resource availability as simulated by plant competition and seed density impacted yield component allele response at four yield component quantitative trait loci (Chapter 4); and (iii) to better understand the mechanism of genetic control of QTn.mst-6B a quantitative trait locus associated with tiller number through high-resolution mapping (Chapter 5). This research highlights the complexity of pleotropic interaction among yield component traits and variability associated with grain yield as impacted by environment and resources availability. Results from the three aims provide a detailed investigation of single quantitative trait loci for use as novel sources of cultivar improvement and increased genetic gain as well as, a better understanding of grain yield and yield component traits.Item Evaluation of wheat production practices under wheat streak mosaic disease risk and wheat stem sawfly pressure in Montana(Montana State University - Bozeman, College of Agriculture, 2020) McKelvy, Uta; Chairperson, Graduate Committee: Mary Burrows; Monica Brelsford, Jamie Sherman and Mary Burrows were co-authors of the article, 'Susceptibility and tolerance of winter wheat, spring wheat and barley cultivars to mechanical inoculation with wheat streak mosaic virus' submitted to the journal 'Plant health progress' which is contained within this dissertation.; Peggy Lamb, Monica Brelsford and Mary Burrows were co-authors of the article, 'Impact of planting date, seeding rate and cultivar choice on spring and winter wheat productivity and profitability in Montana' submitted to the journal 'Agronomy journal' which is contained within this dissertation.; David Weaver and Mary Burrows were co-authors of the article, 'Evaluation of chemical and cultural management practices for wheat stem sawfly control and effects on beneficial insects in spring wheat in Montana' submitted to the journal 'Journal of economic entomology' which is contained within this dissertation.Wheat (Triticum aestivum L.) is an economically important crop for Montana's agricultural industry. Wheat streak mosaic (WSM) is an important viral disease in Montana and the wheat stem sawfly (WSS; Cephus cinctus Norton) is a major insect pest in the state. Understanding these disease and pest problems and the factors that promote and suppress disease and pest pressure forms the foundation for a successful integrated pest management program. In this dissertation, we evaluate wheat production practices in Montana and provide information on the effectiveness and implications of cultural and chemical management practices in mitigating WSM disease and WSS pressure. We assessed the tolerance of popular winter wheat, spring wheat, and barley cultivars in Montana to mechanical inoculation with WSMV in field studies. Winter wheat 'Brawl CL Plus' and breeding lines CO12D922 and MTV1681 demonstrated moderate WSMV incidence and minor yield penalties under WSMV inoculation, making them suitable cultivars to be grown in high-risk environments. We investigated the effects of cultivar choice, planting date, and seeding rate on grain yield and quality parameters in field studies. Our results validated current planting date recommendations for Montana. Yield reductions were observed at planting dates later than mid-September and April for winter wheat and spring wheat, respectively. No yield increase was observed when winter wheat was planted before mid-September. No meaningful and reliable economic benefits were associated with an increase in seeding rate beyond the recommended density. We developed a WSM risk prediction model and released it as the online learning tool AWaRe ('Assessment of Wheat streak mosaic Risk'). AWaRe presents the first learning tool that integrates complex information on the dynamics underlying WSM disease and relates them to the user in an interactive way. We expect the adoption of risk assessment based WSM management practices that result in a reduced economic impact through the use of this tool. The potential of different insecticides to manage WSS damage was compared to spring wheat genotypes with varying degrees of WSS resistance. Results showed that application of the systemic insecticide Thimet-20G provided effective protection of susceptible cultivar 'Reeder,' but use of solid-stem cultivars were similarly effective.Item Characterization and identification of novel reduced height (RHT-1) alleles in wheat(Montana State University - Bozeman, College of Agriculture, 2019) Jobson, Emma Marie; Chairperson, Graduate Committee: Michael J. Giroux; M.J. Giroux, J.M. Martin, R.E. Johnston and A.J. Oiestad were co-authors of the article, 'The impact of the wheat RHT-B1B semi-dwarfing allele on photosynthesis and seed development under field conditions' in the journal 'Frontiers in plant science' which is contained within this dissertation.; M.J. Giroux, J.M. Martin and T.M. Scheider were co-authors of the article, 'The impact of the RHT-B1B, RHT-D1B, and RHT-8 wheat semi-dwarfing genes on flour milling, baking, and micronutrients' in the journal 'Cereal chemistry' which is contained within this dissertation.; M.J. Giroux, J.M. Martin and J.B. Ohm were co-authors of the article, 'RHT-1 semi-dwarfing alleles alter dough rheology by modifying gluten composition' submitted to the journal 'Cereal chemistry' which is contained within this dissertation.; M.J. Giroux, J.M. Martin and A.C. Hogg were co-authors of the article, 'Identification and molecular characterization of novel RHT-1 alleles in hard red spring wheat' submitted to the journal 'Crop science ' which is contained within this dissertation.Since their introduction in the 1960s, the semi-dwarfing Reduced Height (Rht-1) genes in wheat have been incorporated into the majority of modern wheat varieties. Their popularity has been driven by their positive impact on yield. The two most common semi-dwarfing alleles, Rht-B1b and Rht-D1b, reduce height ~20% and increase yield ~6% compared to tall varieties. Their shorter stature makes them less susceptible to lodging under increased water and nitrogen inputs compared to tall wheat varieties. Despite their prevalence, the exact mechanism by which Rht-B1b/Rht-D1b increase yields is still unknown. Furthermore, very little research has been done to characterize their impact on bread making and end use quality. Finally, beyond Rht-B1b and Rht-D1b, there is very little allelic diversity available to wheat breeders. The objectives of this research were to investigate the impact of Rht-B1b on photosynthesis, characterize the impact of Rht-B1b/Rht-D1b on bread making and dough rheology, and to identify and test novel Rht-1 alleles created using EMS mutagenesis. In regards to photosynthesis: we found Rht-B1b reduces flag leaf photosynthetic rate (18%) and chlorophyll A content (23%) compared to the tall wildtype at anthesis. In regards to end use quality: we found Rht-B1b/Rht-D1b decrease total grain protein content (2%) but increase gluten index (21%), bake mixing time, and bake mixing tolerance compared to the tall lines. Increased gluten index and mixing time in the semi-dwarfing lines was shown to be associated with increased high molecular weight glutenins. In regards to developing novel alleles: we identified three nonsense Rht-1 alleles and characterized their impact on coleoptile length, gibberellin responsiveness, and DELLA/GID1 interaction. Further research will be needed to investigate their impact on agronomic traits and found that each abolished GID1 interaction in the absence but not the presence of Gibberellic acid. Overall this dissertation provides new insight on the impact of the semi-dwarfing alleles on wheat growth and development, wheat milling and baking properties and increases the available allelic diversity through the introduction of three new Rht-1 nonsense alleles.Item Impact of nitrogen and water management to grain yield, yield components and traits, and grain quality of two contrasting wheat classes(Montana State University - Bozeman, College of Letters & Science, 2019) Bicego Vieitez de Almeida, Breno; Chairperson, Graduate Committee: Luther E. Talbert and Jessica Torrion (co-chair); Anish Sapkota and Jessica A. Torrion were co-authors of the article, 'Differential nitrogen and water impacts on yield and quality of wheat classes' which is contained within this thesis.; Jessica A. Torrion was a co-author of the article, 'Nitrogen and water impacts on grain yield and components of different wheat classes' which is contained within this thesis.Wheat (Triticum aestivum L.) breeders and physiologists must consider not only grain yield but also its quality. Physiological selection may be an important tool to aid breeders achieve improvements more rapidly. However, different genotypes may have distinct responses to agronomic management and environments. The relationship between those traits also may vary according to wheat class. In the present study we characterized the grain yield, yield components and traits, and quality parameters response of four hard red and four soft white spring wheat cultivars subjected to various nitrogen (N) levels and moisture regimes (stressed vs non-stressed environment) over two years. About one-third grain yield reduction from 2016 to 2017 could be attributed to heat stress. Overall, soft whites had higher grain yield than hard reds, but a stronger negative grain yield-grain protein content relationship. Considering a given year, increments in grain yield also resulted in higher grain protein in hard reds except when N was very low. The cultivar with Gpc-B1 gene for higher grain protein, had similar grain yield to its parent material and to other well adapted hard red cultivar. Vida, characterized by extended green leaf duration after heading (stay-green trait), was better adapted to water and heat stress than the rest of hard reds. Grain fill duration was an important trait especially under heat and drought stress for both wheat classes. We found that, across moisture regime environments and year, productive tiller number had consistently a direct relation with kernel number per area, which was strongly related to grain yield. During the heat and drought stressed year, kernel weight was an important yield component and had neutral relation with kernel number. Nitrogen fertilization had effect on grain yield only during the hot and dry year with irrigation, but no effect was observed under rainfed conditions for this year. Based on the lower grain protein requirement as well the lack of N effect on grain yield for the tested conditions, soft whites may be grown with lower N input than hard reds.Item Controlled sprouting in wheat increases quality and consumer acceptibility of whole wheat bread(Montana State University - Bozeman, College of Letters & Science, 2019) Bummer Johnston, Rachel Elizabeth; Chairperson, Graduate Committee: Michael J. Giroux and Carmen Byker (co-chair); John M. Martin, Carmen Byker-Shanks, Sean Finnie and Michael J. Giroux were co-authors of the article, 'Controlled sprouting in wheat increases quality and consumer acceptability of whole wheat bread' submitted to the journal 'Cereal chemistry' which is contained within this thesis.Intentional sprouting of grain to modify grain products nutritional composition and flavor has been in practice for thousands of years. However, few studies have tested the impact of controlled sprouting on wheat flour functionality and flavor. In this study, grain of nine hard red spring (HRS) wheat (Triticum aestivum L) cultivars was sprouted with the goal of attaining a falling number (FN) value of 200 from a starting FN of 350 seconds. Paired samples of sprouted and sound HRS grain were then assayed for nutritional composition, functionality in bread baking, and in bread taste tests. Sprouting reduced grain hardness and test weight while increasing grain color brightness, yellowness, and redness. Whole sprouted grain flour had twice the alpha amylase activity and a large decrease in flour swelling power relative to sound grain flour. Sprouted flour also contained increased free amino acids and monosaccharides while having decreased sugar alcohol content. Total dietary fiber trended down in the sprouted grain flour while starch content remained unchanged. Whole grain flour color parameters were relatively unaltered by sprouting. Sprouting reduced dough mix times while increasing loaf volume. Sensory panel evaluations demonstrated that testers preferred bread prepared from sprouted grain flour to bread prepared from sound grain while also finding that sprouted grain bread tasted less bitter and grainy while also being perceived as sweeter and moister. The results demonstrate that controlled sprouting of wheat grain could be used to increase whole grain flour functionality in bread baking and consumer acceptability of whole grain foods.Item Elucidating the effect of anthropogenic land management on soil nematode community structure(Montana State University - Bozeman, College of Agriculture, 2019) Burkhardt, Andy; Chairperson, Graduate Committee: Jamie Sherman; Shabeg S. Briar, John M. Martin, Patrick M. Carr, Jennifer Lachowiec, Cathy Zabinski, David W. Roberts, Perry Miller and Jamie Sherman were co-authors of the article, 'Perennial crop legacy effects on nematode community structure in semi-arid wheat systems' in the journal 'Applied soil ecology' which is contained within this thesis.; Shabeg S. Briar, John M. Martin, Patrick M. Carr and Jamie Sherman were co-authors of the article, 'Characterization of soil nematode community structure in semi-arid dryland barley (Hordeum vulgare L.) systems' which is contained within this thesis.Nematodes as a taxonomic phylum are incredibly diverse and play an important role in soil biology, nutrient cycling, and soil food web function. Nematodes can be categorized into five major trophic groups including bacterivores, fungivores, herbivores, predators, and omnivores. Plant-parasitic nematodes (PPNs) affect soil food web resources through direct herbivory, while free-living (non-pathogenic) bacterivores and fungivores graze on microbes and contribute significantly to soil nutrient pools. Predatory nematodes regulate the soil food web by preying on other nematodes and invertebrates in the soil. An unbalanced soil food web community can lead to unintended impacts to other species and create a cascading effect. In agriculture, this impact can lead to low crop production and reduced revenue by means of soil ecological degradation. The goal of this project was to elucidate the nematode community structure changes under different management strategies in both agricultural and range settings. The hypotheses we tested were 1) that crop rotations eliminating fallow would positively and significantly impact the soil nematode community that would in turn self-regulate the PPN population and 2) native sagebrush steppe would have a more diverse nematode community than converted sagebrush steppe managed for livestock grazing or other uses. We did so with the following studies: 1. Quantitatively assessed nematode community structure under barley monoculture and barley-fallow vs. barley-pea rotations using multiple ecological measures and indices and correlated those measures and indices with soil chemical and physical properties as well as agronomic parameters of each system. 2. Quantitatively assessed nematode community structure under wheat-tilled fallow, wheat-no-till fallow, and no-till wheat monoculture vs. several no-till wheat-pulse rotations using multiple ecological measures and indices to evaluate long term impacts of cropping system to the nematode community. 3. Quantified taxonomic diversity and ecological indices of disturbed and undisturbed sagebrush steppe in the Bangtail Mountains west of Wilsall, Montana to evaluate disturbance regimes in a reclaimed environment.Item Zinc efficiency and diversity of Montana wheat and barley(Montana State University - Bozeman, College of Agriculture, 2017) Kaya, Eylul; Chairperson, Graduate Committee: Hikmet Budak; Levent Ozturk and Hikmet Budak were co-authors of the article, 'Micronutrient diversity of Montana wheat and barley' which is contained within this thesis.Zn is essential for all living organisms because of its functional, structural and regulatory roles in more than 300 enzymes found in eukaryotes (McCall, 2000). In plants and humans, trace metal deficiencies cause an altered expression or function of proteins at the metabolic level and may lead to physiological drawbacks in plants and even psychological problems in humans. Plants with improved Zn status may help to alleviate these issues globally. Therefore, it is crucial to understand genes involved in Zn homeostasis. Lack of information on the micronutrient status of Montana wheat and barley was the main reason of this study and most commonly cultivated Montana wheat and barley varieties were included in the study. The aim of this study was; (I) to identify ZIP1 and IRT2 genes in Montana wheat and barley cultivars, (II) to study the physiological response, effectiveness in Zn uptake capacity and Zn translocation to plant edible parts by subjecting these cultivars to Zn deficient and Zn adequate environments and (III) to comprehend the micronutrient diversity and Zn grain localization of local wheat and barley cultivars.