Theses and Dissertations at Montana State University (MSU)
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/732
Browse
5 results
Search Results
Item Virus-like particle surface toll-like receptor signaling modulates host response to bacterial infection(Montana State University - Bozeman, College of Agriculture, 2022) Hatton, Alexis Alexandria; Chairperson, Graduate Committee: Mark T. Quinn; This is a manuscript style paper that includes co-authored chapters.Innate immune recognition of viruses is critical for the rapid response and subsequent clearance of an infection. The primary focus of virus innate immune recognition is the recognition of viral nucleic acids post-infection. However, innate pattern recognition receptors (PRRs) have been demonstrated to recognize viral proteins independent of infection. One group of PRRs associated with viral recognition are Toll-like Receptors (TLRs). With the discovery of TLRs in the late 1990's, over two decades of research have endeavored to identify if cell surface TLRs recognize viral proteins and if so, understand whether surface TLR-viral recognition benefits the host or the virus. To the benefit of the host, it was previously determined that host-recognition of viral proteins protects mice from bacterial infection early post-virus exposure, independent of viral nucleic acids (virus-like particle; VLP). This suggested that early viral protein recognition could protectively prime the host against bacterial infection. Our investigation here attempts to address the generality of surface TLR-virus recognition independent of infection, how viral protein recognition alters the subsequent signaling response to bacterial infection, and finally, if/how expression system-associated variables interfere with the interpretation of our study. We utilized macrophage deficient in surface TLRs and TLR-associated signaling proteins to address the TLR signaling pathway responsible for the general response to VLPs that results in reduced bacterial burden. We found that different surface TLRs were responsible for reducing bacterial burden, resulting in the activation of different signaling pathways dependent upon the VLP macrophages were exposed to. In addition, our results demonstrate how expression system-associated variables alter the interpretation of signaling pathways activated by surface TLRs.Item Investigation of octopamine-glutamate dual transmission neurons(Montana State University - Bozeman, College of Letters & Science, 2020) McKinney, Hannah Margaret; Chairperson, Graduate Committee: Steven R. Stowers; Lewis Sherer, Jessica L. Williams, Sarah Certel and Steven R. Stowers were co-authors of the article, 'Characterization of drosophila mimic-converted octopamine receptor GAL4 lines' in the journal 'Journal of Comparative Neurology' which is contained within this dissertation.; Dissertation contains a paper of which Hannah Margaret McKinney is not the main author.Dual transmission, or the ability of a neuron to signal with more than one neurotransmitter, is now a well-established phenomenon in the field of neuroscience. However, many questions about this type of signaling process still remain with regards to its mechanisms and its impacts on neural circuitry and organism behavior. In particular, the mode of neurotransmitter release from synaptic vesicles can have significant profoundly affects elements on neural circuitry and, subsequently, on behaviors of an organism. In Drosophila melanogaster, a particular subset of neurons important for the behaviors of courtship and aggression signal with the neuromodulator octopamine and the excitatory neurotransmitter glutamate. Whether these two neurotransmitters are released simultaneously (co-release) or are housed for separate synaptic release (cotransmission) is unknown. The mechanism of release for these neurotransmitters in this population of neurons is investigated here through the development of synaptic vesicle visualization tools, synaptic vesicle isolation, and an examination of the expression of octopamine and glutamate receptors; I explored the hypothesis that receptor expression downstream of dual transmitting neurons will provide information about the co-release or co-transmission of octopamine and glutamate. Results from these experiments demonstrated release of octopamine and glutamate from the same synaptic site, with some variation, and a significant amount of presynaptic receptor expression. The results indicate these dual transmission neurons may release octopamine and glutamate at the same synapse for both post-synaptic signaling as well as pre-synaptic signal modulation.Item Hydrodynamic analysis of human neutrophil N-formyl chemotactic receptor-G protein interactions : mapping of interfacial domains with receptor-mimetic peptides(Montana State University - Bozeman, College of Letters & Science, 1994) Bommakanti, Rajani KanthItem Molecular characterization of the primary adhesion mechanisms that direct [gamma/delta] T cells to epithelial-associated tissues(Montana State University - Bozeman, College of Agriculture, 1994) Walcheck, Bruce KennethItem Production and purification of formyl peptide receptor : explorations of protein-protein interactions(Montana State University - Bozeman, College of Agriculture, 1997) Kohler, Maria Renata