Theses and Dissertations at Montana State University (MSU)

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/732

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Illuminating dynamic phenomena within organic microstructures with time resolved broadband microscopies
    (Montana State University - Bozeman, College of Letters & Science, 2024) Hollinbeck, Skyler Robert; Chairperson, Graduate Committee: Erik Grumstrup; This is a manuscript style paper that includes co-authored chapters.
    Materials derived from organic chromophore subunits are currently at the forefront of academic and industrial interest. This strong interest is driven in part by the tunability of their extant properties through engineering of both the intra-molecular and inter-molecular structure. The structure of organic materials affects optoelectronic properties because organic chromophores are sensitive to dipole-dipole and charge-transfer coupling interactions. This sensitivity presents both opportunities for tuning functional properties through designing specific packing geometries, and liabilities arising from the disruptive effects of structural disorder. Many organic materials are built from weak noncovalent interactions between chromophores, leading solid-state deposition, and crystallization to be susceptible to microscopic variations in environmental conditions. Structural heterogeneity is regularly intrinsic to organic materials, and even self-assembled systems of covalently linked chromophores exhibit defects. Ergo, in order to disentangle the effects of structural heterogeneity from the inherent properties of the material, the study of organic materials must be anchored with techniques that are capable of correlating optoelectronic properties and excited state evolution with microscale morphological characteristics. We have employed broadband pump-probe microscopies, in conjunction with steady-state and time resolved fluorescence techniques, to examine the effects of structure and coupling on excited state dynamics in solid-state organic microstructures. The study of perylene diimide (PDI) materials revealed that kinetically trapping PDI (KT-PDI) enhanced long-range ordering and led to distinct excited state evolution, delocalized charge-transfer states and long-lived charge separated species. In the MOF PCN-222, excitation energy dependent excited state behavior was observed. Pumping the first excited state (Q-band) led to immobile excited states that were relatively unaffected by local defect densities, whereas pumping the second excited state (Soret-band) led to mobile subdiffusive excited state species whose lifetimes are significantly impacted by morphologically correlated defect sites. Finally, we present progress made toward the construction and utilization of a frequency modulated-femtosecond stimulated Raman microscope, yielding spectra that resolve the location of photoinduced anion formation in KT-PDI. The work presented herein highlights broadband time-resolved microscopy as a potent tool for studying the structure-function relationship and photophysical behavior in molecular solids, deepening our understanding of how structural characteristics influence excited state evolution.
  • Thumbnail Image
    Item
    Excited-state dynamics of biological molecules in solution: photoinduced charge transfer in oxidatively damaged DNA and deactivation of violacein in viscous solvents
    (Montana State University - Bozeman, College of Letters & Science, 2017) Beckstead, Ashley Ann; Chairperson, Graduate Committee: Robert Walker
    UV radiation from the sun is strongly absorbed by DNA, and the resulting electronic excited states can lead to the formation of mutagenic photoproducts. Decades of research have brought to light the excited-state dynamics of single RNA and DNA nucleobases, but questions remain about the nature of excited states accessed in DNA strands. In this thesis, I present ultrafast spectroscopic observations of photoinduced electron transfer from the oxidatively damaged bases, 8-oxo-7,8-dihydro-2'-deoxyguanosine, 5-hydroxy-2'-deoxycytidine and 5-hydroxy-2'-deoxyuridine, to adenine in three dinucleotides. The results reveal that charge transfer states are formed on a timescale faster than our instrumental resolution (<0.5 ps), and back electron transfer efficiently returns the excited-state population to the ground state on timescales from tens to hundreds of ps. In addition to recent spectroscopic observations of charge transfer state species in DNA by other groups, our results have augmented understanding of the long-lived transient signals observed in DNA strands. The observation of photoinduced electron transfer in these oxidatively damaged nucleobases also supports a recent proposal regarding the role of oxidative products in pre-RNA catalysis. I discuss these observations in the contexts of fundamental DNA excited-state dynamics and prebiotic chemical evolution. In this thesis, I also present the first ultrafast spectroscopic investigation of violacein, a pigment isolated from Antarctic bacteria. Despite claims for the photoprotective role of this pigment, there has never been a spectroscopic analysis of excited-state deactivation in violacein. Emission spectra, fluorescence quantum yields and excited-state lifetimes of violacein in various solvents were measured for the first time. Both the fluorescence quantum yield and excited-state lifetime of violacein increase in increasingly viscous solvents, suggesting a large-scale motion mediates excited-state deactivation. I compare these results to similar observations of viscosity-dependent excited-state decay rates in other molecules. I also consider the relevance of violacein's excited-state properties to the hypothesized sunscreening role of violacein. Overall, the studies presented in this dissertation illustrate how ultrafast spectroscopic techniques can be used to unravel complex biomolecular excited-state dynamics in solution.
  • Thumbnail Image
    Item
    Subnanosecond emission from model DNA oligomers characterized through time-correlated single-photon counting spectroscopy
    (Montana State University - Bozeman, College of Letters & Science, 2017) Skowron, David John; Chairperson, Graduate Committee: Robert Walker; Yuyuan Zhang, Ashley A. Beckstead, Jacob M. Remington, Madison Strawn and Bern Kohler were co-authors of the article, 'Subnanosecond emission dynamics of AT DNA oligonucleotides' in the journal 'Journal of chemical physics and physical chemistry' which is contained within this thesis.
    Exposure of DNA to UV radiation creates electronic excited states that can decay to mutagenic photoproducts. Excited states can return to the electron ground state through deactivation pathways, preventing photochemical damage. Understanding has significantly advanced over the last decade through the applications of time-resolved techniques capable of picosecond and femtosecond time-resolution. While significant strides have been made towards understanding monomeric deactivation pathways, unraveling the complex photophysics of base multimers still presents a significant challenge. This report uses time-resolved fluorescence and ultrafast transient absorbance to analyze model DNA oligomers to understand how fundamental interactions between monomeric constituents influences the dynamics of base multimers. Model single- and double-stranded DNA oligomers were investigated using the time correlated single photon counting technique to address the uncertainty over how to compare results from time-resolved fluorescent and transient absorption techniques. Emission lifetimes ranging from 50 to 200 ps quantitatively agree with lifetimes measured from transient absorption experiments indicating emission observed on timescales greater than a few picoseconds is the result of excimer or charge recombination luminescence. In attempts to further characterize the time-resolved emission from model oligomers adenine oligomers consisting of 2 and 18 base constituents were examined in aqueous water and heavy water solutions. Differences in dynamics between the two oligomers revealed the average number of bases present within a stacked domain influence the dynamics of these systems. Lifetimes of the emission decays were assigned excimer-like states with various degrees of charge-transfer character. Finally, to further demonstrate the importance of base stacking domain length on the dynamics of these systems, time-resolved emission and absorption of the adenine dinucleotide and 18-mer where examined at temperatures ranging from 7 °C - 80 °C. It was observed that the kinetics between the oligomers was noticeably different at lower temperatures, but not at higher temperatures. It was concluded the domain length of the 18-mer was similar to the domain length of the dinucleotide at high temperatures, but not at low temperatures, demonstrating the domain length significant impacts theS photophysics of DNA.
  • Thumbnail Image
    Item
    Battery state-of-health assessment using a near real-time impedance measurement technique under no-load and load conditions
    (Montana State University - Bozeman, College of Engineering, 2011) Christophersen, Jon Petter; Chairperson, Graduate Committee: M. Hashem Nehrir
    The reliability of battery technologies has become a critical issue as the United States seeks to reduce its dependence on foreign oil. One of the significant limitations of in-situ battery health and reliability assessments, however, has been the inability to rapidly acquire information on power capability during aging. The Idaho National Laboratory has been collaborating with Montana Tech of the University of Montana and Qualtech Systems, Incorporated, on the development of a Smart Battery Status Monitor. This in-situ device will track changes in battery performance parameters to estimate its state-of-health and remaining useful life. A key component of this onboard monitoring system will be rapid, in-situ impedance measurements from which the available power can be estimated. A novel measurement technique, known as Harmonic Compensated Synchronous Detection, has been developed to acquire a wideband impedance spectrum based on an input sum-of-sines signal that contains frequencies separated by octave harmonics and has a duration of only one period of the lowest frequency. For this research, studies were conducted with high-power lithium-ion cells to examine the effectiveness and long-term impact of in-situ Harmonic Compensated Synchronous Detection measurements. Cells were cycled using standardized methods with periodic interruptions for reference performance tests to gauge degradation. The results demonstrated that in-situ impedance measurements were benign and could be successfully implemented under both no-load and load conditions. The acquired impedance spectra under no-load conditions were highly correlated to the independently determined pulse resistance growth and power fade. Similarly, the impedance measurements under load successfully reflected changes in cycle-life pulse resistance at elevated test temperatures. However, both the simulated and measured results were corrupted by transient effects and, for the under-load spectra, a bias voltage error. These errors mostly influenced the impedance at low frequencies, while the mid-frequency charge transfer resistance was generally retained regardless of current level. It was further demonstrated that these corrupting influences could be minimized with additional periods of the lowest frequency. Therefore, the data from these studies demonstrate that Harmonic Compensated Synchronous Detection is a viable in-situ impedance measurement technique that could be implemented as part of the overall Smart Battery Status Monitor.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.