Theses and Dissertations at Montana State University (MSU)

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/732

Browse

Search Results

Now showing 1 - 10 of 10
  • Thumbnail Image
    Item
    Evaluating host plant preference and pheromone attract and kill as strategies to manage pea leaf weevil Sitona lineatus (L.) (Coleoptera: Curculionidae) in Montana
    (Montana State University - Bozeman, College of Agriculture, 2022) Kiju, Pragya; Chairperson, Graduate Committee: Michael A. Ivie and Kevin Wanner (co-chair); This is a manuscript style paper that includes co-authored chapters.
    Pea leaf weevil (Sitona lineatus) is the most common insect pest of field peas grown in Montana. Montana is the number one producer of field pea in the US. Currently, Montana producers spray insecticides at least once or twice during the spring growing season to avoid leaf damage inflicted by pea leaf weevil adults and larvae. Complete reliance on insecticides may, however, raise the risk of pea leaf weevil populations developing genetic resistance. Therefore, this project focuses on development of alternative pulse insect pest management strategies such as pheromone-based attract and kill and host plant preference. For the attract and kill strategy 6 different treatments compared combinations of aggregate pheromone (4-methyal-3,5- heptanedione) alone in two different forms; septa and pellet, pheromone with granular insecticide (Deltamethrin). To determine the effect of host variety on adult feeding preference, 10 field pea, 2 faba bean, 2 lentil and 2 chickpea varieties were assessed for feeding damage. Crescent shaped notches were counted on 10 individual plants per replicate plot. The average number of larvae within the nitrogen fixing root nodules of each variety was also recorded on 5 randomly selected individual plants per plot. Faba bean was the most preferred host while lentil and chickpea suffered almost no feeding damage. 'Delta' and 'Lifter' field pea varieties appeared to be preferred over 'DS Admiral' and 'AC Agassiz' varieties. Given the significant level of feeding on all pea and faba bean cultivars further evaluation of low-cost pheromone traps are essential to establishing an IPM control approach.
  • Thumbnail Image
    Item
    Overcoming the challenges of tamarix management with Diorhabda carinulata through the identification and application of semiochemicals
    (Montana State University - Bozeman, College of Agriculture, 2018) Gaffke, Alexander Michael; Chairperson, Graduate Committee: David K. Weaver; Sharlene E. Sing, Tom L. Dudley, Daniel W. Bean, Justin A. Russak, Agenor Mafra-Neto, Paul A. Grieco, Robert K. D. Peterson and David K. Weaver were co-authors of the article, 'Semiochemicals to enhance herbivory by Diorhabda carinulata aggregations in saltcedar (Tamarix spp.) infestations' in the journal 'Pest management science' which is contained within this thesis.; Sharlene E. Sing, Tom L. Dudley, Daniel W. Bean, Justin A. Russak, Agenor Mafra-Neto, Robert K. D. Peterson and David K. Weaver were co-authors of the article, 'Field demonstration of a semiochemical treatment that enhances Diorhabda carinulata biological control of Tamarix spp.' submitted to the journal 'BioControl' which is contained within this thesis.; Sharlene E. Sing, Tom L. Dudley, Daniel W. Bean, Justin A. Russak, Agenor Mafra-Neto, Robert K. D. Peterson and David K. Weaver were co-authors of the article, 'Allee effects and aggregation pheromones: new releases of Diorhabda carinulata remain longer in the presence of pheromone formulations' submitted to the journal 'Biological Invasion' which is contained within this thesis.; Sharlene E. Sing, Jocelyn Millar, Tom L. Dudley, Daniel W. Bean, Robert K. D. Peterson and David K. Weaver were co-authors of the article, 'Behavioral responses of Diorhabda carinulata adults to repellent compounds isolated and identified in volatiles collected from conspecific larvae' submitted to the journal 'Journal of chemical ecology' which is contained within this thesis.
    The northern tamarisk beetle, Diorhabda carinulata (Desbrochers), is an approved and established classical biological control agent for saltcedars (Tamarix spp.). Adequate control of Tamarix has not yet been achieved in certain areas where D. carinulata has been released. Retaining beetle populations on sites where it has been released is problematic, and accurately monitoring D. carinulata populations to determine successful establishment is difficult. Negative, indirect impacts have also resulted from the agent's establishment outside targeted treatment areas in the southwestern United States. Manipulation of D. carinulata spatial distribution with semiochemicals could potentially resolve or ameliorate these and other operational issues. Lures utilizing a specialized wax based matrix for the controlled release of semiochemicals were impregnated with a previously identified pheromone and/or behaviorally active host plant volatiles known to stimulate aggregation in D. carinulata. Emission of these compounds from the matrix was characterized using a push-pull volatile collection system, and quantified using gas chromatography-mass spectrometry. Observed release rates confirm that semiochemicals lures formulated with this matrix are a viable option for facilitating aggregation of D. carinulata under field conditions. The results of field-based assays indicate saltcedars treated with this semiochemical delivery system attracted and retained higher densities of D. carinulata than Tamarix that received a control (semiochemical free) lure. Higher densities of both adult and larval D. carinulata were recorded on treated plants. Semiochemically treated Tamarix plants also exhibited more damage, resulting in a greater decrease in canopy volume than control trees. The attraction and retention of D. carinulata to these species-specific semiochemicals on treated Tamarix plants also arrested the dispersal of newly released individuals, resulting in greater population growth. Repellent semiochemicals were also investigated for their potential to manipulate spatial distributions of D. carinulata in the field and behavioral assays conducted with reproductive adults demonstrated the ability of larval produced compounds to repel conspecific adults. These results indicate that semiochemical-impregnated media could be useful for detecting, retaining, and directing populations of D. carinulata. The use of semiochemicals could be used to potentiate low density populations, increase monitoring efficacy, retain adults on release sites, and repel D. carinulata from sensitive habitat.
  • Thumbnail Image
    Item
  • Thumbnail Image
    Item
    Genetic analysis of the MAT-1 pheromone gene of Ustilago hordei and the study of morphogenesis during the mating response
    (Montana State University - Bozeman, College of Agriculture, 1999) Anderson, Cynthia Marie
  • Thumbnail Image
    Item
    Detection of Ustilago hordei in barley leaf tissue by polymerase chain reaction and analysis of the MAT-2 pheromone and pheromone receptor genes
    (Montana State University - Bozeman, College of Agriculture, 1998) Willits, Deborah Ann
  • Thumbnail Image
    Item
    Biosynthesis of 2-ketones in Drosophila buzzatii
    (Montana State University - Bozeman, College of Letters & Science, 1992) Skiba, Paul Joseph
  • Thumbnail Image
    Item
    New synthetic methodologies for natural products
    (Montana State University - Bozeman, College of Letters & Science, 1978) Bornmann, William Gerard
  • Thumbnail Image
    Item
    Synthetic studies toward natural products
    (Montana State University - Bozeman, College of Letters & Science, 1982) Schwartz, Timothy Ryall
  • Thumbnail Image
    Item
    Evolution of the molecular mechanisms of pheromone reception in European and Asian corn borer moths
    (Montana State University - Bozeman, College of Agriculture, 2010) Allen, Jean Elaine; Chairperson, Graduate Committee: Kevin Wanner.; Kevin W. Wanner, Andrew S. Nichols, Peggy L. Bunger, Stephen F. Garczynski, Charles E. Linn Jr., Hugh M. Robertson and Charles W. Luetje were co-authors of the article, 'Sex pheromone receptor specificity in the European corn borer moth, Ostrinia nubilalis' in the journal 'PLoS ONE' which is contained within this thesis.; Kevin W. Wanner was a co-author of the article, 'Asian corn borer pheromone binding protein 3, a candidate for evolving specificity to the 12-tetradecenyl acetate sex pheromone' in the journal 'Insect biochemistry and molecular biology' which is contained within this thesis.
    The insect order Lepidoptera includes more than 180,000 species and some of the most well known pests of food and fiber crops. Ninety-eight percent of lepidopteran species belong to a taxonomic group called the Ditrysia. Modern Ditrysia use long distance sex pheromones to facilitate mating. The European corn borer, Ostrinia nubilalis (ECB) is a well known pest of agricultural crops throughout North America and Western Europe. The European corn borer species exists as two different pheromone races. Females of the species produce, and males are attracted to different blends of the isomers (Z)-11-tetradecenyl acetate and (E)-11-tetradecenyl acetate. The closely related Asian corn borer (O. furnacalis, ACB) has evolved to use a pheromone blend that is unique among all Lepidoptera, (Z)- and (E)-12-tetradecenyl acetate. O. nubilalis and O.furnacalis species can be used as models to study pheromone evolution. Pheromones are detected at the periphery of the olfactory system by olfactory sensilla located on the antennae. Proteins involved in pheromone detection at the periphery include: odorant receptors, pheromone binding proteins, and sensory neuron membrane proteins. In this study, the coding sequences of seven odorant receptors, five pheromone binding proteins, and two sensory neuron membrane proteins were cloned from Asian and European (E and Z race) corn borer antennae. Five odorant receptors and two pheromone binding proteins were expressed at high levels in male corn borer antennae based on quantitative real-time PCR assays. Several odorant receptors were heterologously expressed in Xenopus laevis oocytes, and odorant receptor 6 was found to respond specifically to (Z)-11-tetradecenyl acetate in electrophysiological studies. The coding sequences of all fourteen genes were analyzed by computational and statistical methods to identify candidate genes that may play a role in the detection of the ACB pheromone blend. Odorant receptor 3 and pheromone binding protein 3 may have evolved specificity to 12-tetradecenyl acetates. Future studies will clarify the role of these proteins in the evolution of pheromone detection at the molecular level. An improved understanding of the evolution of pheromone detection may lead to new pheromone based controls for these economically damaging species.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.