Theses and Dissertations at Montana State University (MSU)

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/732

Browse

Search Results

Now showing 1 - 5 of 5
  • Thumbnail Image
    Item
    Wireless sensor network development for the purpose of measuring acceleration in snow
    (Montana State University - Bozeman, College of Engineering, 2023) Lesser, James Byron; Chairperson, Graduate Committee: Edward E. Adams
    A WSN (Wireless Sensor Network) was developed for the purpose of measuring snow acceleration in response to loading of various types. In its current state, the WSN is composed of seven nodes (radio enabled sensors) and one controller. Two dynamic ranges, +/- 10 g and +/- 40 g, allow for user adjustment based on the required sensitivity of measurement. Acceleration data is logged simultaneously across all active nodes; data from an analog accelerometer is stored by each node on a microSD card. Data throughput limits the maximal sampling frequency to 10 kHz at 8-bit precision, or 5 kHz at 10-bit precision. Empirical investigation of GEM (Green Environmental Monopropellant) as a tool for avalanche mitigation was conducted with the first iteration of the WSN. The GEM explosive is compared with the industry standard, Pentolite; the metrics of comparison are those of overpressure, impulse per unit area, and the resulting snow acceleration. This study showed the effectiveness of the WSN as a tool for measuring snow dynamic response under explosive loading. Additionally, an ECT (Extended Column Test) instrumented with the WSN on this day elicited continued development of the WSN. A detailed look at the components of the WSN provides the physical and electrical qualities focused on the nodes intended environment - seasonal snow. Theory of operation, and a standard operating procedure, provide fundamental knowledge for the end user. Modal testing was performed to characterize the vibration response of the node. Natural frequencies are identified within the bandwidth of the accelerometer, and it is shown that these frequencies are not present in signals collected in snow under impulsive loading. Acceleration data acquired by the WSN in a series of stability tests, conducted in the lab and in the field, demonstrate the utility of the system.
  • Thumbnail Image
    Item
    A continuum mixture theory applied to stress waves in snow
    (Montana State University - Bozeman, College of Engineering, 1991) Austiguy, George Edward
    In avalanche control work the types of explosives and delivery methods used are primarily determined by trial and error. Understanding the propagation of stress waves in snow is a step towards eliminating some of this guesswork. A continuum theory of mixtures is applied to model snow as a mixture of an elastic solid and an elastic fluid. Three wave types, two dilational and one rotational wave are shown to exist. Theoretical expressions are developed for the wave attenuation and propagation velocity of each of the wave types. Numerical evaluation shows velocity and attenuation increasing with frequency for all three waves. Wave velocity increases with increasing density while attenuation decreases with increasing density for all three waves. The first dilational wave has a slow wave speed and is highly attenuated. This wave exhibits diffusive behavior at low frequencies and nondispersive behavior at high frequencies. The second dilation wave is the fastest of the three wave types and does not appreciably attenuate. Nondispersive wave behavior characterizes this wave at low and high frequencies. The rotational wave is the least attenuated of all three waves and propagates at velocities greater than that of the first dilational . wave but less than that of the second dilational wave. The rotational wave exhibits nondispersive behavior at low and high frequencies. Wave velocities and attenuation show behavior that is in agreement with existing experimental data.
  • Thumbnail Image
    Item
    The spatial variability of snow resistance on potential avalanche slopes
    (Montana State University - Bozeman, College of Letters & Science, 1990) Birkeland, Karl Wessel
  • Thumbnail Image
    Item
    Experimental investigation of interactions between explosive detonations and the resulting snowpack response
    (Montana State University - Bozeman, College of Engineering, 2012) Bones, Josephine Anne; Chairperson, Graduate Committee: Daniel Miller
    Avalanches threaten many areas of the world. For many years, risk has been mitigated through artificial avalanche initiation using explosives. Even with extensive use, a lack of experimental determinations of the interactions between explosive detonations and the snowpack response exists. To address this, a multiyear field based research project was conducted at Montana State University, Bozeman, MT. A portable instrument array consisting of pressure and accelerometer sensors was fabricated and utilized to record the overpressure and acceleration of the snowpack resulting from detonation of pentolite cast boosters. Explosives were detonated 0-2 m above the snow surface, at 0.5 m increments. All sensors were placed within a 7 m radius of the explosive in soft slab and hard slab snow conditions. The data was used to characterize relationships between explosive size and location to the resulting overpressure and snow acceleration based on various snow parameters. The snow surface was shown to be able to reflect shockwaves, thus, increasing the shockwave pressure. It was shown that elevating an explosive off the snow surface resulted in greater overpressure and peak snowpack acceleration than surface detonations. Elevating an explosive was found to not influence the vertical or radial attenuation. Therefore raising a charge increased the volume of influence. Overpressure and acceleration were shown to be nonlinearly related to the explosive mass. Doubling the mass resulted in less than double the response. The acceleration of moist snow was determined to be less and the attenuation greater than for dry snow conditions. Hard slab conditions indicated lower acceleration and greater shockwave attenuation than soft slab snow. Snowpack peak acceleration and attenuation were shown to have little dependence on either the total snow water equivalent or snow density. For rock bed surfaces the shockwave was reflected back through the snow while meadow bed surfaces did not. This project verified past theoretical and experimental results, but further research would be beneficial for avalanche mitigation work. A continuation of this work could lead to increased efficiency and safety for the avalanche community.
  • Thumbnail Image
    Item
    The effects of explosives on the physical properties of snow
    (Montana State University - Bozeman, College of Letters & Science, 2013) Wooldridge, Robyn Elaine; Chairperson, Graduate Committee: Jordy Hendrikx
    Explosives are a critically important component of avalanche control programs. They are used to both initiate avalanches and to test snowpack instability by ski areas, highway departments and other avalanche programs around the world. Current understanding of the effects of explosives on snow is mainly limited to shock wave behavior demonstrated through stress wave velocities, pressures and attenuation. This study seeks to enhance current knowledge of how explosives physically alter snow by providing data from field-based observations and analyses that quantify the effect of explosives on snow density, snow hardness and snow stability test results. Density, hardness and stability test results were evaluated both before and after the application of 0.9 kg cast pentolite boosters as surface and air blasts. Changes in these properties were evaluated at specified distances up to 5.5 meters (m) from the blast center for surface blasts and up to 4 m from the blast center for air blasts. A density gauge, hand hardness, a ram penetrometer, Compression Tests (CTs), and Extended Column Tests (ECTs) were used. In addition to the field based observations, the measurement error of the density gauge was established in laboratory tests. Results from surface blasts did not provide conclusive data. Air blasts yielded statistically significant density increases out to a distance of 1.5 m from the blast center and down to a depth of 50 centimeters (cm). Statistically significant density increases were also observed at the surface (down to 20 cm) out to a distance of 4 m. Hardness data showed little to no measurable change. Results from CTs showed a statistically significant decrease in the number of taps needed for column failure 4 m from the blast center in the post-explosive tests. A smaller data set of ECT results showed no overall change in ECT score. The findings of this study provide a better understanding of the physical changes in snow following explosives, which may lead to more effective and efficient avalanche risk mitigation.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.