Theses and Dissertations at Montana State University (MSU)

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/732

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Positive effects of ecosystem engineers on stream communities and processes
    (Montana State University - Bozeman, College of Letters & Science, 2022) Tumolo, Benjamin Bartley; Chairperson, Graduate Committee: Lindsey Albertson; This is a manuscript style paper that includes co-authored chapters.
    Ecosystem engineering is a process by which organisms modify habitat characteristics and influence community structure and ecosystem function. These engineer-mediated habitat modifications often have positive effects on community members by improving or creating novel habitats that ameliorate harsh conditions. Despite the far-reaching consequences of such positive interactions, most of what we know about ecosystem engineering is limited to marine or terrestrial habitats and focused on sessile, long-lived foundation species. Less recognition has been given to mobile, smaller bodied, and shorter-lived insect engineers within freshwater ecosystems. This knowledge gap is significant as freshwaters are one of the most threatened habitats globally, and freshwater insects are experiencing alarming rates of decline. My dissertation seeks to uncover how organism interactions modify physical and resource environments in ways that can affect community structure and ecosystem function. My objectives were to: 1) synthesize literature to develop a conceptual framework aimed at describing how two distinct mechanisms of positive interactions scale over time and space; 2) measure how net-spinning caddisfly (Hydropsychidae) engineers and their abandoned engineering structures differentially facilitate communities; 3) quantify the importance of beneficiary functional traits and environmental gradients in determining the strength of facilitation between caddisflies and invertebrate communities; and (4) test how caddisflies can generate hotspots of community assembly and ecosystem function. I found that caddisfly ecosystem engineers and their abandoned structures increased invertebrate colonization; however, occupied structures supported greater colonization of Chironomidae compared to abandoned structures. Additionally, I found that the strength of caddisfly facilitation increased with increasing elevation and was dependent on small-bodied beneficiaries. Furthermore, I found that caddisfly engineers generated ecological heterogeneity by aggregating both resources and consumers, with consequences for elemental cycling. Overall, my dissertation emphasizes the role that biology can play in modifying environments and how these alterations can positively influence biological communities with consequences for ecosystem function.
  • Thumbnail Image
    Item
    Ecosystem engineering at the streambed: how net-spinning caddisflies influence substrate flow dynamics
    (Montana State University - Bozeman, College of Letters & Science, 2020) MacDonald, Michael Joseph; Chairperson, Graduate Committee: Lindsey Albertson; Lindsey K. Albertson and Geoffrey C. Poole were co-authors of the article, 'Ecosystem engineering at the streambed: how net-spinning caddisflies influence substrate flow dynamics' submitted to the journal 'Ecohydrology' which is contained within this thesis.
    The streambed is an ecotone between surface waters and underlying hyporheic systems. Identifying the controls on advective flow through this ecotone is critical to understanding the movement of energy and matter in streams. Hydropsychids (net-spinning caddisflies) are aquatic macroinvertebrate ecosystem engineers that influence streambed cohesion, yet evidence of direct influence on hydrologic processes is lacking. Utilizing a novel downward flow permeameter, we demonstrate how net-spinning caddisfly colonization of the streambed interstitia at moderate but common densities (2,000 m^-2) can reduce the vertical hydraulic conductivity (KV) by up to 55% in coarse sand and gravels (median diameter = 12.91 mm). Sediment columns incubated in artificial stream water occupied by caddisflies showed greater reductions in KV relative to those without caddisflies. Additionally, organic matter content within sediment columns showed that occupation by caddisflies resulted in nearly two-fold increases in organic matter AFDM. Our research shows that the ubiquitous and numerous net-spinning caddisflies are likely to modulate the exchange of channel and hyporheic water by constructing nets in open pore spaces, increasing flow resistance, and decreasing flow velocities, as well as stimulating organic matter deposition with potential consequences for biofilm growth. These results suggest that caddisfly induced reductions to flow may influence transfer processes occurring at the streambed ecotone, altering biogeochemical processes in streams.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.