Theses and Dissertations at Montana State University (MSU)
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/732
Browse
4 results
Search Results
Item Microbiomes and zoonoses: dynamics of the black flying fox (Pteropus alecto) gastrointestinal microbiome(Montana State University - Bozeman, College of Agriculture, 2022) Jones, Devin Nicole; Chairperson, Graduate Committee: Raina K. Plowright; This is a manuscript style paper that includes co-authored chapters.Land-use change is increasingly recognized as a driver of spillover of zoonotic pathogens. Australian black flying foxes (Pteropus alecto) are experiencing extensive loss of habitat which reduces available food, particularly in winter. Hendra virus (HeV, family: Paramyxoviridae) was isolated from horses and humans in 1994 and P. alecto was later identified as the reservoir host. As habitat loss threatens these bat populations, and Hendra virus continues to spill over to horses annually, it is important to understand factors that influence bat health and viral shedding. Because gastrointestinal tract (GIT) microbiomes are important for host health and are understudied in flying foxes, the goal of this research was to understand the natural dynamics of the P. alecto GIT microbiome and its associations with diet, body composition, markers of inflammation, and viral shedding. We sampled Pteropus alecto near Brisbane from 2018-2020. We captured bats returning from foraging and collected rectal swabs to determine the GIT microbiome using 16S rRNA amplicon sequencing. In addition to feces for dietary analysis, we also collected samples to measure health and infection, including blood to measure neutrophil-to-lymphocyte ratios, urine to detect Hendra virus, and bioelectrical impedance analysis to measure body fat. These data enabled us to determine how the P. alecto GIT microbiome varied within individuals over time and in the context of physiological, ecological, and dietary shifts. Lastly, we asked if we could predict health outcomes using the GIT microbiome. We found that P. alecto GIT microbiomes are highly dynamic over time, through different life stages, between foraging strategies, and that the type of diet is associated with GIT microbiome diversity. Bats consuming native foods had lower GIT microbiome diversity compared to those consuming introduced and cultivated foods. Despite associations between body fat and HeV infection, the GIT microbiome was not able to predict these health outcomes. These results suggest that P. alecto GIT microbiomes are highly dynamic and may not contribute significantly to host health. Future research should incorporate more health metrics or other approaches to microbiome profiling to determine if the GIT microbiome could be used as a biomarker of health.Item Using gastrointestestinal organoids to study infectious diseases in humans and bats(Montana State University - Bozeman, College of Agriculture, 2021) Hashimi, Marziah; Chairperson, Graduate Committee: Diane Bimczok; This is a manuscript style paper that includes co-authored chapters.The gastrointestinal epithelium plays a critical role in protecting the gastrointestinal mucosa from invading microorganism such as bacteria or a viruses. Helicobacter pylori (H. pylori) infection of human gastric epithelium causes gastric cancer, which is the third leading cause of cancer-related mortality worldwide. Dendritic cells (DCs)--which are antigen presenting cells--are responsible for the activation of T cells. However, the mechanism by which DCs are recruited to the gastric epithelium is still unknown. We hypothesized that the DCs are recruited to the gastric epithelium in a chemokine- dependent manner. For my thesis work, I utilized human primary gastric epithelial organoids cells to test this hypothesis and evaluate the recruitment of DCs to the epithelium under normal conditions and upon H. pylori infection. Using monocyte-derived DCs in a chemotaxis assay, I showed that these cells are recruited to H. pylori-infected organoid supernatant. I showed that this recruitment is chemokine- dependent, as it was significantly decreased when a chemokine receptor inhibitor was included in the chemotaxis assay. COVID-19 is caused by severe respiratory syndrome coronavirus-2 (SARS-CoV-2). In addition to respiratory symptoms, COVID-19 patients can also have diarrhea and vomiting, indicating that SARS-CoV-2 may infect the gastrointestinal tract. Bats are thought to be the natural reservoirs for SARS-CoV-2, however there is no known bat gastrointestinal model to study SARS-CoV-2 infection. In the second part of my thesis, I developed Jamaican fruit bat (JFB), Artibeus jamaicensis) gastrointestinal organoids (JFB organoids). I successfully developed organoids from JFB stomach, proximal and distal intestine. I showed via histology and gene expression that developed organoids do indeed recapitulate their corresponding tissues from which they were derived. I also tested whether the JFB distal intestinal organoids were susceptible to SARS-CoV-2 infection. While they do not support the active replication of SARS-CoV-2 infection, they did show antiviral and pro-inflammatory responses. My results also showed that SARS-CoV-2 does not induce programmed cell death in the organoids.Item Assessing respiratory pathogen communities and demographic performance of bighorn sheep populations: a framework to develop management strategies for respiratory disease(Montana State University - Bozeman, College of Letters & Science, 2017) Butler, Carson Joseph; Chairperson, Graduate Committee: Robert A. GarrottRespiratory disease (pneumonia) is a persistent challenge for bighorn sheep (Ovis canadensis) conservation as sporadic epizootics cause up to 90% mortality in affected populations and are often followed by numerous years of low juvenile recruitment attributed to lamb pneumonia. Domestic sheep (Ovis aries) and domestic goats (Capra aegagrus hircus) are the origin of the disease and asymptomatically carry respiratory pathogens that cause respiratory disease when introduced to bighorn sheep. Pathogens that have been linked to respiratory disease in bighorn sheep include several species of bacteria in the Pasteurellaceae family and another bacterial species, Mycoplasma ovipneumoniae. Despite substantial efforts by management agencies to prevent contact between bighorn sheep and domestic sheep and goats, respiratory disease epizootics continue to affect bighorn sheep populations across much of their distribution with uncertain etiology. This study sought to investigate efficacy of diagnostic protocols in detecting Pasteurellaceae and Mycoplasma ovipneumoniae and generate sampling recommendations for different protocols, assess the distribution of these disease agents among 17 bighorn sheep populations in Montana and Wyoming and evaluate what associations existed between detection of these agents and demographic performance of bighorn sheep populations. Analysis of replicate samples from individual bighorn sheep revealed that detection probability for regularly-used diagnostic protocols was generally low (<50%) for Pasteurellaceae and was high (>70%) for Mycoplasma ovipneumoniae, suggesting that routine pathogen sampling likely mischaracterizes respiratory pathogen communities. Power analyses found that most pathogen species could be detected with 80% confidence at the population-level by conducting regularly-used protocols multiple times per animal. Each pathogen species was detected in over half of the study populations, and consideration of detection probability discerned that there was low confidence in negative test results for populations where the Pasteurellaceae species were not detected. 76% of study populations hosted Mycoplasma ovipneumoniae and Pasteurellaceae pathogens, yet a number of these populations were estimated to have positive population growth rates and recruitment rates greater than 30%. Overall, the results of this work suggest that bighorn sheep respiratory disease may be mitigated by manipulating population characteristics and respiratory disease epizootics could be caused by pathogens already resident in bighorn sheep populations.Item Contributions of pneumococcal virulence factors to secondary Streptococcus pneumoniae infection following influenza infection(Montana State University - Bozeman, College of Agriculture, 2009) King, Quinton Oliver; Chairperson, Graduate Committee: Allen G. Harmsen.Influenza infection increases susceptibility to secondary infection with Streptococcus pneumoniae resulting in significantly increased morbidity and mortality. Whereas viral contributions to this synergism have been explored, little is known concerning contributions of the bacterium, specifically those provided through bacterial virulence factors. To assess the contributions of the known pneumococcal virulence factors hyaluronidase (Hyl), neuraminidase (NanA) and pneumococcal surface protein A (PspA) to secondary S. pneumoniae infection following influenza infection, mutants lacking these proteins were administered with wildtype pneumococci in a competitive growth model. Whereas mutants lacking the Hyl and NanA proteins did not exhibit attenuation, mutants lacking PspA were severely attenuated in mice without influenza infection and significantly more so in mice with a prior influenza infection. Additionally, mice received intranasal immunization with recombinant PspA protein and subsequently received primary and secondary challenges with serotypes 2, 3 and 4 pneumococci. Immunization with PspA significantly reduced bacterial burdens of all three challenge serotypes in primary and secondary pneumococcal infection and significantly reduced lung damage markers in mice receiving secondary pneumococcal challenges. In addition to known virulence factors, two surface-exposed proteins, Spr0075 and Spr1345, were assessed for virulence contributions to primary and secondary pneumococcal infections. Mutants lacking Spr0075 or Spr1345 were found to be severely attenuated in both primary and secondary pneumococcal challenges. Whereas immunization with either recombinant Spr0075 or Spr1345 significantly reduced primary pneumococcal burdens, only immunization with Spr0075 significantly reduced secondary pneumococcal burdens. Together these results indicate virulence contributions to both primary and secondary pneumococcal challenges for the PspA, Spr0075 and Spr1345 proteins. However, whereas immunization with PspA and Spr0075 significantly reduced both primary and secondary pneumococcal burdens, immunization with Spr1345 did not significantly impact secondary pneumococcal burdens. This result illustrates that a virulence contribution and/or an ability to protect against primary infection does not necessarily translate into a protein's capacity to protect against secondary infection. The results presented here are the first experimental evidence demonstrating virulence roles for the Spr0075 and Spr1345 proteins and are the first reports of immunization with pneumococcal proteins, specifically PspA and Spr0075, providing protection against secondary pneumococcal infection following influenza.