Theses and Dissertations at Montana State University (MSU)
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/732
Browse
2 results
Search Results
Item Chlorine induced degradation of SOFCS operating on carbon containing fuels(Montana State University - Bozeman, College of Letters & Science, 2017) Reeping, Kyle Wyatt; Chairperson, Graduate Committee: Robert Walker; Robert A. Walker was a co-author of the article, 'In operando vibrational raman studies of chlorine contamination in solid oxide fuel cells' in the journal 'The journal of the Electrochemical Society' which is contained within this thesis.; John D. Kirtley, Jessie M. Bohn, Daniel A. Steinhurst, Jeffrey C. Owrutsky and Robert A. Walker were co-authors of the article, 'Chlorine-induced degradation in solid oxide fuel cells identified by optical methods' in the journal 'The journal of physical chemistry C' which is contained within this thesis.; Jessie, M. Bohn and Robert A. Walker were co-authors of the article, 'Chlorine-induced degradation in SOFCS operating with biogas' in the journal 'Sustainable energy and fuels' which is contained within this thesis.; Jessie, M. Bohn and Robert A. Walker were co-authors of the article, 'The palliative effect of H 2 on SOFCS operating on contaminated carbon containing fuels' submitted to the journal 'The journal of power sources' which is contained within this thesis.Chlorine present in green and synthetic fuels such as biogas and syngas can accelerate degradation of solid oxide fuel cell (SOFC) nickel-based anodes. Chlorine contamination has been studied in SOFCs where H 2 was the primary fuel but little attention has focused on deleterious, cooperative effects that result from Cl-contamination in predominantly carbon-containing fuels. Experiments described in this work examine degradation mechanisms in SOFCs with Ni-YSZ cermet anodes operating with a biogas surrogate and exposed to 110 ppm Cl (delivered either as CH 3Cl or HCl). Operando Raman spectroscopy is used to directly observe the the anode's catalytic activity as evidenced by observable carbon accumulation, and electrochemical impedance and voltammetry measurements report on overall cell performance. Studies performed at 650 °C and 700 °C show that Cl suppresses carbon accumulation and causes slow but steady cell degradation. Prolonged exposure to Cl results in and irreversible device failure. These results differ markedly from recent reports of Cl contamination in SOFCs operating independently with H 2 and CH 4.Item Investigation of a control strategy for manipulation and prevention of Pseudomonas aeruginosa PAO1 biofilms in metalworking fluids(Montana State University - Bozeman, College of Engineering, 2018) Ozcan, Safiye Selen; Chairperson, Graduate Committee: Christine Foreman; Markus Dieser, Albert E. Parker, Narayanaganesh Balasubramanian and Christine M. Foreman were co-authors of the article, 'Quorum sensing inhibition as a promissing method to control biofilm growth in metalworking fluids' submitted to the journal 'Environmental science & technology' which is contained within this thesis.Microbial contamination in metalworking fluid (MWF) circulation systems is a serious problem. Particularly water based MWFs promote microbial colonization despite the use of biocides. Inhibiting the quorum sensing mechanism (i.e. cell-cell communication) in bacteria is a promising approach to control and prevent biofilm formation. The objective of this study was (i) to determine the microbial community in MWFs from operational machining shops, (ii) to investigate the effect of well-known quorum sensing inhibitors on controlling biofilm formation, and (iii) to implement experimental data from selected enzymes to a computer simulation biofilm accumulation model (BAM). Planktonic and biofilm samples from two local machining shops in Bozeman, MT, were collected to determine the extent of microbial colonization. In both operations, microbial communities were dominated by Pseudomonadales (60.2-99.7%). Rapid recolonization was observed even after dumping spent MWFs and cleaning. Considering the dominance of Pseudomonadales in MWFs, the model organism Pseudomonas aeruginosa PAO1 was selected for testing the effects of quorum sensing inhibitor compounds on biofilm formation. From a variety of enzymes, natural, and chemical compounds screened for quorum sensing inhibition, Patulin (40microns) and Furanone C-30 (75microns), were found to be effective in reducing biofilm formation in MWFs when applied as single compound amendments and in combination with the polysaccharide degrading enzyme alpha-amylase from Bacillus amyloliquefaciens. Particularly Furanone C-30, as a single amendment and in combination with alpha-amylase decreased biofilm formation by 76% and 82% after 48 hours. Putatively identified homoserine lactones in MWFs treated with Furanone C-30 provided evidence for quorum sensing inhibition on biofilm formation. BAM was employed to study the effect of alpha-amylase (3 Units mL -1) on P. aeruginosa PAO1 biofilms in batch reactors for 24 and 48 hours. In the absence of alpha-amylase, biofilm thickness was predicted to be 23.11 and 31.37 microns, while its presence reduced thickness to 10.47 and 13.07 microns after 24 and 48 hours, respectively. The results presented herein highlight the potential effectiveness of quorum sensing inhibition as a strategy to reduce biofilms in MWFs.