Theses and Dissertations at Montana State University (MSU)

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/732

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Spectral processing for algae monitoring and mapping (SPAMM): remote sensing methodologies for river ecology
    (Montana State University - Bozeman, College of Engineering, 2024) Logan, Riley Donovan; Chairperson, Graduate Committee: Joseph A. Shaw; This is a manuscript style paper that includes co-authored chapters.
    Inland water quality is a growing concern to public health, riparian ecosystems, and recreational uses of our waterways. Many modern water quality programs include measures of the presence and abundance of harmful and nuisance algae. In southwestern Montana, large blooms of the nuisance algae, Cladophora glomerata, have become common in the Upper Clark Fork River due to a combination of warming water temperatures, naturally high phosphorus levels, and an influx of contaminants through wastewater and anthropogenic activity along its banks. To improve understanding of bloom dynamics, such as algal biomass and percent algae cover, and their effects on water quality, a UAV-based hyperspectral imaging system was used to monitor several locations along the Upper Clark Fork River. Image data were collected across the spectral range of 400 - 1000 nm with 2.1 nm spectral resolution during field sampling campaigns across the entirety of the project, beginning in 2019 and ending in 2023. In this dissertation, methodologies for monitoring water quality were developed. These methods include estimating benthic algal pigment abundance using spectral band ratios achieving R 2 values of up to 0.62 for chlorophyll alpha and 0.96 for phycocyanin; creating spatial algae distribution maps and estimating percent algae cover using machine learning classification algorithms with accuracies greater than 99%; combining spatial algae distribution maps and improved pigment estimation using machine learning regression algorithms for creating chlorophyll alpha abundance maps, achieving an R 2 of 0.873, while also comparing abundance values to Montana water quality thresholds; and identifying salient wavelengths for monitoring and mapping algae to inform the design of a low-cost and compact multispectral imager. Throughout all field campaigns, significant spatial variations in algal growth within each river reach and frequent violations of current water quality standards were observed, demonstrating the need for high-spatial resolution monitoring techniques to be incorporated in current water quality monitoring programs.
  • Thumbnail Image
    Item
    Microbial adaptation to cultivation stress using storage compounds
    (Montana State University - Bozeman, College of Agriculture, 2022) Arnold, Adrienne Dale; Chairperson, Graduate Committee: Ross Carlson; This is a manuscript style paper that includes co-authored chapters.
    Methanotrophs and green algae are microorganisms that grow on single carbon substrates. Methanotrophs are bacteria that use methane as their carbon source, and green algae are eukaryotic phototrophs that grow on CO 2. They are of interest both as primary producers in the environment and as biological catalysts for the conversion of greenhouse gases into value-added compounds. Understanding how methanotrophs and green algae adapt to cultivation stresses is key to understanding carbon cycling in the environment and in industrial settings. This work uses stoichiometric metabolic modeling to investigate the role of carbon storage compounds in the metabolism of C1-utilizing organisms. Storage compounds are accumulated as intracellular reserves of polysaccharides or lipids, which can be catabolized under stress conditions to provide carbon and energy to the cell. Catabolism of carbon storage compounds often results in the excretion of multi-carbon organic compounds that can be utilized as carbon substrates by other members of the microbial community. In silico metabolic models were developed for methanotroph and algal systems and used to examine the breakdown of storage compounds in response to common cultivation stresses. For the aerobic methanotrophs, predictions focused on the use of polyhydroxybutyrate and glycogen in adaptation to O 2 limitation. For the green algae, starch and triacylglycerol reserves are analyzed as sources for compatible solutes, which are produced by cells in response to high salinity conditions. Metabolic modeling of storage compound utilization by methanotrophs and algae helps elucidate the role of these organisms as primary producers and presents an opportunity for industrial production of multi-carbon compounds from single carbon substrates.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.