Theses and Dissertations at Montana State University (MSU)
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/732
Browse
3 results
Search Results
Item Effect of bio-cementation on thermal properties of silty sand(Montana State University - Bozeman, College of Engineering, 2022) Gunyol, Pinar; Chairperson, Graduate Committee: Mohammad KhosraviIn recent years, there has been an increasing interest in the use of biological technologies in geotechnical engineering to improve thermal properties of geomaterials. Urea hydrolysis is a chemical reaction which can generate favorable conditions that result in the precipitation of calcium carbonate. Certain microbes or plant sources produce the urease enzyme which catalyzes the hydrolysis of urea to form carbonate (CaCO 3) to bond soil particles. Cementation located between the grain particles acts as a highly conductive heat transfer path by increasing the contact area between the sand particles. In this thesis, the applicability of bio-cementation via microbially induced calcite precipitation (MICP) on silty sand specimens with different fines contents of 0%, 5%, and 15% were investigated. MICP promoting fluids were injected into sand-filled columns and the resulting calcium conversion was measured. At the end of the injections, the MICP treated specimens were tested for cementation uniformity. The amount of precipitated CaCO 3 gradually decreased as the distance from the injection ports increases. The observed bio-cementation distribution could be attributed to the filtration of bacterial cells through the soil particles. The resulting effect of filtration on CaCO 3 distribution was observed to be more prominent for silty sands, presumably due to the presence of fine grains. Thermal conductivity measurements were assessed after each pulse during the MICP treatment using a TR-3 sensor. Under the saturated and untreated conditions, thermal conductivity increased with increasing fines content. In addition, MICP treatment can increase the thermal conductivity of saturated silty sands with the increasing number of treatment pulses. An increase of about 18% in thermal conductivity of the soil was achieved at an average CaCO 3 content of 10.7% presumably due to the formation of calcium carbonate bridges binding the soil grains together. The results presented herein suggests that MICP treatment can be a viable option to increase the thermal conductivity of soils in the range of fines content studied here (less than 15%). The findings of this research could be used to improve the efficiency of geothermal boreholes and other energy geo-structures using MICP by improving thermal conductivity of dry and partially saturated soil.Item Thermal transport in superconductors with coexisting spin density wave order(Montana State University - Bozeman, College of Letters & Science, 2021) Choudhury, Sourav Sen; Chairperson, Graduate Committee: Anton Vorontsov; This is a manuscript style paper that includes co-authored chapters.In this thesis we study thermal transport in a two-dimensional system with coexisting s- or d-wave Superconducting (SC) and Spin Density Wave (SDW) orders. We analyse the nature of coexistence phase in a tight-binding square lattice with Q = (pi, pi) SDW ordering. The electronic thermal conductivity is computed within the framework of the Boltzmann kinetic theory, using Born approximation for the impurity scattering collision integral. We describe the influence of the Fermi surface (FS) topology, the competition between the SC and SDW order parameters, the presence or absence of zero energy excitations in the coexistence phase, on the low temperature behavior of thermal conductivity of the various paring states. We present qualitative analytical, and fully numerical results that show that the heat transport signatures of various SC states emerging from collinear SDW order are quite distinct, and depend on the symmetry properties of the SC order parameter under translation by the SDW nesting vector Q. A combination of (pi, pi)-SDW and the d x 2-y 2 pairing state results in fully gapped excitations, whereas (pi, pi)-SDW co-existing with either d xy or s-wave pairing states may always have gapless excitations. There appear special stable Dirac nodal points that are not gapped by the SC order in the coexistence phase, resulting in finite residual heat conductivity.Item Thermal contact resistance at the snow-ice interface: dependence on grain size(Montana State University - Bozeman, College of Engineering, 2022) Dvorsak, Michael Alan; Chairperson, Graduate Committee: Kevin HammondsSeasonal snow covers consist of many stratigraphic layers of varying density and, therefore, thermal conductivity. Weak layers can develop at the interface between these snow layers, reducing stability and increasing avalanche danger. While it is known that a bulk temperature gradient of -10?C m -1 across a snowpack enhances weak layer development via kinetic snow metamorphism, recent studies have identified an enhancement of this temperature gradient across snow interfaces. Previous work has determined that at a snow-ice interface, such as might exist around ice crusts in the snowpack, the driving factor for a temperature gradient enhancement could be a thermal contact resistance. This creates an interfacial phenomenon that induces a large temperature drop at the interface between two connected materials. The primary mechanism is a reduction of contact area for conduction to occur due to the porous nature of snow. Here, we further investigate the thermodynamics of a snow-ice interface by varying the grain size, which directly correlates to the total contact area. Within a controlled laboratory environment, a 4 mm ice lens was artificially made and placed between rounded grains that varied in size (1, 2, and 3 mm) between experiments. Temperature gradients of -10, -50, and -100 ?C m -1 were then applied across the sample. The temperature gradient was measured in-situ within 1 mm of the ice lens using micro-thermocouple measurements. The local temperature gradient at the snowice interface was found to be up to four times the imposed temperature gradient with 2-3 mm snow grains and near the bulk temperature gradient with the 1 mm grains. Following a thermal analysis, it was concluded that the enhancement in the temperature gradient was also due to a thermal contact resistance at the snow-ice interface. Utilizing timelapse x-ray computed microtomography, a microstructural characterization of the snow-ice interface was also performed, where it was observed that new ice crystal growth, kinetic snow metamorphism, and sublimation were all occurring simultaneously near the ice lens. These results indicate that the observed grain size near an ice lens or crust in a natural snowpack may be a pertinent parameter for better understanding kinetic snow metamorphism regimes that may exist at these interfaces.