Theses and Dissertations at Montana State University (MSU)
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/732
Browse
13 results
Search Results
Item Evaluation of wheat production practices under wheat streak mosaic disease risk and wheat stem sawfly pressure in Montana(Montana State University - Bozeman, College of Agriculture, 2020) McKelvy, Uta; Chairperson, Graduate Committee: Mary Burrows; Monica Brelsford, Jamie Sherman and Mary Burrows were co-authors of the article, 'Susceptibility and tolerance of winter wheat, spring wheat and barley cultivars to mechanical inoculation with wheat streak mosaic virus' submitted to the journal 'Plant health progress' which is contained within this dissertation.; Peggy Lamb, Monica Brelsford and Mary Burrows were co-authors of the article, 'Impact of planting date, seeding rate and cultivar choice on spring and winter wheat productivity and profitability in Montana' submitted to the journal 'Agronomy journal' which is contained within this dissertation.; David Weaver and Mary Burrows were co-authors of the article, 'Evaluation of chemical and cultural management practices for wheat stem sawfly control and effects on beneficial insects in spring wheat in Montana' submitted to the journal 'Journal of economic entomology' which is contained within this dissertation.Wheat (Triticum aestivum L.) is an economically important crop for Montana's agricultural industry. Wheat streak mosaic (WSM) is an important viral disease in Montana and the wheat stem sawfly (WSS; Cephus cinctus Norton) is a major insect pest in the state. Understanding these disease and pest problems and the factors that promote and suppress disease and pest pressure forms the foundation for a successful integrated pest management program. In this dissertation, we evaluate wheat production practices in Montana and provide information on the effectiveness and implications of cultural and chemical management practices in mitigating WSM disease and WSS pressure. We assessed the tolerance of popular winter wheat, spring wheat, and barley cultivars in Montana to mechanical inoculation with WSMV in field studies. Winter wheat 'Brawl CL Plus' and breeding lines CO12D922 and MTV1681 demonstrated moderate WSMV incidence and minor yield penalties under WSMV inoculation, making them suitable cultivars to be grown in high-risk environments. We investigated the effects of cultivar choice, planting date, and seeding rate on grain yield and quality parameters in field studies. Our results validated current planting date recommendations for Montana. Yield reductions were observed at planting dates later than mid-September and April for winter wheat and spring wheat, respectively. No yield increase was observed when winter wheat was planted before mid-September. No meaningful and reliable economic benefits were associated with an increase in seeding rate beyond the recommended density. We developed a WSM risk prediction model and released it as the online learning tool AWaRe ('Assessment of Wheat streak mosaic Risk'). AWaRe presents the first learning tool that integrates complex information on the dynamics underlying WSM disease and relates them to the user in an interactive way. We expect the adoption of risk assessment based WSM management practices that result in a reduced economic impact through the use of this tool. The potential of different insecticides to manage WSS damage was compared to spring wheat genotypes with varying degrees of WSS resistance. Results showed that application of the systemic insecticide Thimet-20G provided effective protection of susceptible cultivar 'Reeder,' but use of solid-stem cultivars were similarly effective.Item Effect of agronomic practices on disease incidence, severity, and impacts in Montana cropping systems(Montana State University - Bozeman, College of Agriculture, 2017) Ranabhat, Nar Bahadur; Chairperson, Graduate Committee: Fabian D. Menalled; Mary Burrows (co-chair)Integrated pest management is at the foundation of sustainable cropping systems. This thesis investigated 1) the influence of alternative host plants and agronomic practices on Wheat streak mosaic virus (WSMV) risk, and 2) how cover crop termination methods influence diseases in grazed organic, tilled organic, and chemical no-till systems. To assess the influence of alternative hosts including volunteer wheat, Bromus tectorum, Setaria viridis, and Zea mays on WSMV incidence and its vector, the wheat curl mite (Aceria tosichella, WCM) movement during the fall, a 'trap plant' capture system was used. In 2013, alternative hosts had similar WCM infestation levels compared to the control in most weeks. In 2014, spring planted B. tectorum and volunteer wheat increased the incidence of WSMV and abundance of WCM compared to control. In a study assessing the impact of planting date and winter wheat variety on WSMV incidence, there was almost no infection of WSMV across resistant wheat varieties. However, Pronghorn, a susceptible wheat variety, had a higher WSMV incidence at the early planting date than recommended and late planting dates. In a companion study of the impact of wheat variety and timing of N application on WSMV incidence, results did not differ across N application timing across resistant varieties. However, early spring N application in 2014 had a higher WSMV incidence compared to fall and late spring N application in Pronghorn and Yellowstone. A study assessing the impact of cropping systems on diseases indicated that disease incidence during the transition to organic period in 2013 and 2014 as well as an established organic year, 2016, was similar at tillering and flowering stages of winter wheat between the grazed organic, tilled organic, and chemical no till system. However, disease incidence was variable between systems at the matured growth stage in 2014 and 2016. In 2015, disease incidence varied between systems at all growth stages. Overall, disease severity was similar in winter wheat between grazed organic, tilled organic, and chemical no till systems, indicating disease is not a major constraint to organic methods of crop production during the transition period.Item Chemical control and disease reservoir studies of the wheat curl mite (Aceria tosichella Keifer), vector to wheat streak mosaic virus(Montana State University - Bozeman, College of Agriculture, 2016) Murphy, Carmen Yvette; Chairperson, Graduate Committee: Mary BurrowsWheat streak mosaic virus (WSMV) causes yield loss to wheat (Triticum aestivum) in all areas of the world where the crop is grown. No chemical controls for the WSMV vector, the wheat curl mite (WCM, Aceria tosichella Keifer), are approved. Control relies primarily on avoiding a 'green-bridge' of living plant material that can host the disease between seasons. This study aimed to 1) identify chemical treatments for WCM control under conventional and organic systems and clarify misconceptions that treatments, such as sulfur, control WCM and 2) analyze the capacity of 20 grassy species to serve as reservoirs of WSMV and WCM. The effects of insecticides with varying modes of action (carbamate, organophosphate, pyrethroid, neonicotinoid, biological control, oil, ovicide, mite growth inhibitor, and soap) on WCM population growth were tested in the greenhouse. Treatment with the active ingredients aldicarb and chlorpyrifos decreased WCM populations compared to untreated controls (p<0.001 and p<0.001). Field trials were conducted in spring wheat in 2013 and winter wheat in 2013-2014. Similar effects on WSMV spread were not observed in field trials. These trials included ten products consisting of five modes of action: organophosphates, pyrethroid, oil, soap and mite growth inhibitor. Chlorpyrifos was included in the field trials, but no efficacy was seen in 2013 compared to controls under good infection and incidence and infection was low in 2014, therefore we were unable to distinguish any treatment effect. To assess the capacity of 20 grassy species to serve as reservoirs of WSMV and WCM, plants with varying lifespan and origin were grown in the greenhouse and infested with viruliferous WCM. Lifespan had the greatest impact on ability of plants to host WCM (p=0.011) and WSMV (p<0.001). Annual plant species are more likely to host WCM than perennial grasses, with all species hosting WCM. Native and introduced species tested did not differ in ability to host WCM (p=0.735) and WSMV (p=0.096). This study provides evidence of potential for use of active ingredient chlorpyrifos in WCM control, and showed that lifespan is an important determinant of WSMV disease reservoir potential of grassy species.Item Purification and serology of barley yellow streak mosaic virus(Montana State University - Bozeman, College of Agriculture, 1993) Skaf, Jihad S.Item Epidemiology of wheat curl mite (Aceria tosichella K.) and wheat streak mosaic virus on feral grass species and effect of glyphosate on wheat curl mite dispersal(Montana State University - Bozeman, College of Agriculture, 1998) Brey, Christopher WilliamItem Factors influencing the outcome of barley yellow streak mosaic virus-Petrobia latens-barley interactions(Montana State University - Bozeman, College of Agriculture, 1995) Smidansky, Eric DanielItem Chemotherapeutic elimination of genetic components(Montana State University - Bozeman, College of Agriculture, 1983) Miller, Roger VincentItem Field evaluation of transgenic and classical sources of wheat streak mosaic virus resistance(Montana State University - Bozeman, College of Agriculture, 2000) Sharp, Gail LouiseItem Symptomatology and transmissibility of the mosaic disease of great northern bean(Montana State University - Bozeman, College of Agriculture, 1933) Norris, Bernice HelenItem Influence of a legume covercrop on volunteer wheat, the wheat curl mite, Aceria tosichella (K.) and wheat streak mosaic virus(Montana State University - Bozeman, College of Agriculture, 1998) Carroll, Matthew Wyatt