Theses and Dissertations at Montana State University (MSU)

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/732

Browse

Search Results

Now showing 1 - 10 of 67
  • Thumbnail Image
    Item
    NMR characterization of unfrozen brine vein distribution and structure in frozen systems
    (Montana State University - Bozeman, College of Engineering, 2022) Lei, Peng; Chairperson, Graduate Committee: Sarah L. Codd; This is a manuscript style paper that includes co-authored chapters.
    The liquid vein network (LVN) that forms in the interface of ice crystals or particles exists in frozen porous media due to the freezing point depression. The distribution and structure of the LVNs are dynamic due to the ice recrystallization phenomenon. In ice alone, the LVNs formed by the ice crystal interfaces can be characterized as a porous medium in terms of surface to volume ratio (SV /) and the tortuosity (alpha).The presence of solid particles or ice-binding proteins (IBPs) make the frozen system much more complex. The research presented uses nuclear magnetic resonance (NMR) experimental techniques, including magnetic resonance imaging (MRI), relaxation and self-diffusion measurements, to study the development of the LVNs in complex frozen systems containing solid particles or IBPs. Poly-methyl methacrylate (PMMA) particles of diameters 0.4, 9.9, and 102.2 microns are used with brine solution concentrations of 15, 30, and 60 mM Magnesium chloride (MgCl 2) to simulate complex frozen systems. The dynamic rearrangement with time of LVNs can be studied as a function of temperature, MgCl 2 concentration, and PMMA particle size. The results indicate that small solid particles dominate the structure dynamics while in larger solid particle packed beds the solute effect dominates. This behavior is quantified by determination of SV / and alpha from NMR relaxation and diffusion data. Additionally, IBP produced from the V3519-10 organism isolated from the Vostok ice core in Antarctica is added to ice samples frozen from 30, 60 and 120 mM MgCl 2 solution to investigate its influence on LVNs over months of aging. The interplay of the solute and biological effects is complicated but it appears the biological effect is more pronounced at lower salt concentrations. The data provide a basis for eventual combination of salt, IBP and solid particulate studies. The result of MRI, relaxation and self-diffusion measurements indicate the inhibition of ice recrystallization as a function of particle size, MgCl 2 concentration and the presence of IBP. The non-invasive data presented along with calibration of the relaxation experiments with self-diffusion experiments, demonstrate the continued extension of NMR techniques developed from porous media to frozen porous media and ice LVN structure.
  • Thumbnail Image
    Item
    Investigating the role of allostery through changes in protein stability and dynamics
    (Montana State University - Bozeman, College of Letters & Science, 2021) Patterson, Angela Jean; Chairperson, Graduate Committee: Brian Bothner; Faiz Ahmad and Jaigeeth Deveryshetty were authors and Jenna R. Mattice, Nilisha Pokhrel, Brian Bothner and Edwin Antony were co-authors of the article, 'Hydrogen-deuterium exchange reveals a dynamic DNA-binding map of replication protein A' in the journal 'Nucleic Acids Research' which is contained within this dissertation.; Zhongchao Zhao, Elizabeth Waymire, Adam Zlotnick, and Brian Bothner were co-authors of the article, 'Dynamics of hepatitis B virus capsid protein dimer regulates assembly through an allosteric network' in the journal 'ACS chemical biology' which is contained within this dissertation.; Paul B.G. van Erp was an author and Ravi Kant, Luke Berry, Sarah M. Golden, Brittney L. Forsman, Joshua Carter, Ryan N. Jackson, Brian Bothner and Blake Wiedenheft were co-authors of the article, 'Conformational dynamics of DNA binding and Cas 3 recruitment by the CRISPR RNA-guide cascade complex' in the journal 'ACS chemical biology' which is contained within this dissertation.; Aidan White, Elizabeth Waymire, Sophie Fleck, Sarah Golden, Royce Wilkinson, Blake Wiedenheft and Brian Bothner were co-authors of the article, 'Thermodynamics of CRISPR-anti-CRISPR interactions provides mechanistic insight into inhibition' which is contained within this dissertation.
    Allostery is the presence of a communication network that links functional sites of a protein that are distal from one another. The existence of an allosteric network can be observed through conformational change or a change in protein dynamics. These networks can be used to provide insight into the mechanistic function of proteins or protein complexes. In this thesis, four protein complexes were studied (RPA, HBV, Cascade, and Csy) and allosteric networks within the complexes were observed by monitoring the changes in protein dynamics upon an energy perturbation. To measure the changes in protein dynamics, hydrogen deuterium exchange mass spectrometry was used. This technique allows for the determination of how often the hydrogen bonding within a protein structure is broken. By tracking the longevity of the hydrogen bonding network that comprises the studied protein's structure, the dynamics of the protein can be studied. In this work, each of the proteins had changes in protein dynamics that were distal from the site of the energy perturbation that had functional impacts on each of the protein complexes. The combined presence of the distal changes in dynamics with an effect on protein function fits the definition of allostery. If allostery is present in these four diverse systems, is it possible that allostery is present in all proteins?
  • Thumbnail Image
    Item
    Structure and function of a prokaryotic argonaute from Pseudomonas aeruginosa
    (Montana State University - Bozeman, College of Agriculture, 2020) Erickson, Reece Sheridan; Chairperson, Graduate Committee: Blake Wiedenheft
    Argonautes (Ago) are structurally and functionally diverse proteins present in all domains of life. A common feature of these ancient proteins is their ability to bind nucleic acid guides that target the protein to complementary sequences. Although eukaryotic argonautes (eAgo) have been well-studied, we still know very little about the function of prokaryotic argonautes (pAgo) in bacterial and archaeal species. To address this gap in our knowledge, my thesis focused on determining the biochemical properties as well as the cellular functions of a pAgo from the organism Pseudomonas aeruginosa PACS2 (PaAgo). Here, we show that PaAgo plays a role in regulating the expression of transposons within PACS2. I also present results indicating that deletion of the PaAgo gene and its neighboring genes causes toxicity to P. aeruginosa. Finally, I provide evidence that PaAgo and a neighboring protein are binding partners and form a multi-protein complex. Future work will focus on copurifying and sequencing PaAgo nucleic acid guides as well as clarifying the mechanisms guide acquisition and biological function.
  • Thumbnail Image
    Item
    Large-scale automated human protein-phenotype relation extraction from biomedical literature
    (Montana State University - Bozeman, College of Engineering, 2020) Pourreza Shahri, Morteza; Chairperson, Graduate Committee: Indika Kahanda
    Identifying protein-phenotype relations is of paramount importance for applications such as uncovering rare and complex diseases. Human Phenotype Ontology (HPO) is a recently introduced standardized vocabulary for describing disease-related phenotypic abnormalities in humans. While the official HPO knowledge base maintains known associations between human proteins and HPO terms, it is widely believed that this is incomplete. However, due to the exponential growth of biomedical literature, timely manual curation is infeasible, rendering the need for efficient and accurate computational tools for automated curation. In this work, we present HPcurator, a novel two-step framework for extracting relations between proteins and HPO terms from biomedical literature. First, we implement ProPheno, a comprehensive online dataset composed of human protein-phenotype co-mentions extracted from the entire set of biomedical articles. Subsequently, we show that these co-mentions are useful as a complementary source of input for a different, but highly related, task of automated protein-phenotype prediction. Next, we develop a supervised machine learning model called PPPred, which, to the best of our knowledge, is the first predictive model that can classify the validity of a given sentence-level protein-phenotype co-mention. Using a gold standard dataset composed of manually curated sentence co-mentions, we demonstrate that PPPred significantly outperforms several baseline methods. Finally, we propose SSEnet, a novel deep semi-supervised ensemble framework for relation extraction that combines deep learning, semi-supervised learning, and ensemble learning. This framework is motivated by the fact that while the manual annotation of co-mentions is extremely prohibitive, we have access to millions of unlabeled co-mentions. We develop a prototype of HPcurator by instantiating SSEnet with ProPheno, self-learning, pre-trained language models, as well as convolutional and recurrent neural networks. This system can successfully output a ranked list of relevant sentences for a user input protein-phenotype pair. Our experimental results indicate that this system provides state-of-the-art performance in human protein- HPO term relation extraction. The findings and the insight gained from this work have implications for biocurators, biologists, and the computer science community involved in developing biomedical text mining tools.
  • Thumbnail Image
    Item
    The biofilm matrix in sulfate-reducing bacterial biofilms: potential roles for electron mediators and large proteins
    (Montana State University - Bozeman, College of Letters & Science, 2019) Krantz, Gregory Peter; Chairperson, Graduate Committee: Matthew Fields; Kilean Lucas, Erica L.-Wunderlich, Linh T. Hoang, Recep Avci, Gary Siuzdak and Matthew W. Fields were co-authors of the article, 'Bulk phase resource ratio alters carbon steel corrosion rates and endogenously produced extracellular electron transfer mediators in a sulfate-reducing biofilm' in the journal 'Biofouling' which is contained within this dissertation.; Peter J. Walian, Marty Boyl-Davis, Kara De Leon, Judy D. Wall and Matthew W. Fields were co-authors of the article, 'Large extracellular proteins sense hydrodynamic force and drive biofilm formation in Desulfovibrio vulgaris' which is contained within this dissertation.; Marty Boyl-Davis, Kara De Leon, Judy D. Wall and Matthew W. Fields were co-authors of the article, 'Characterization of extracellular biofilm mutants cultivated on 1018 carbon steel in Desulfovibrio vulgaris Hildenborough' which is contained within this dissertation.
    Sulfate-reducing bacteria grow and form biofilms in soil and benthic environments across much of the Earth's surface. Formation of these prevalent biofilms requires the secretion of an extracellular polymeric substance (EPS) to allow the cells to stick together, as well as adhere to a surface. The specific interactions that occur between EPS components of an SRB biofilm are poorly understood. The data presented in this dissertation suggest the presence of two extracellular mechanisms utilized in these communities. The first mechanism was observed in a study altering the lactate (electron donor) and sulfate (electron acceptor) ratios to create limiting nutrient conditions in Desulfovibrio alaskensis G20 (G20) biofilms. G20 was grown under two conditions: electron donor limited (EDL) and electron acceptor limited (EAL) conditions. When grown on a 1018 carbon steel substrate, the G20 consumes all of the available lactate, and once limited, it turns to the high energy electrons in the Fe 0 for growth. Corrosion rates in the steel increased two fold compared to the EAL condition. Global metabolomic analysis revealed increased lumichrome levels under the EDL condition, which suggested higher flux through the riboflavin/FAD biosynthetic pathway. Previous research showed that synthetically adding riboflavin and FAD increases the corrosion rate of a SRB biofilm on 1018 carbon steel, and paired with these results, suggest G20 produces a flavin-based extracellular electron transfer molecule endogenously, and uses it to harvest high energy electrons from Fe 0 when limited for electron donor. The second mechanism was observed in Desulfovibrio vulgaris Hildenborough (DvH) biofilms grown on glass. Two proteins, DVU1012 and DVU1545 were found to be the most abundant extracellular peptides in a DvH biofilm. Single deletion strains for these proteins grew biofilm similar to the wild type strain, but a double deletion strain had decreased ability to form biofilm, demonstrating that at least one of the peptides must be present in order to form a biofilm. Exposure to increased shear force caused an large increase in wild-type biofilm biomass, yet eliminated the double mutant biofilm. These proteins are required for a DvH biofilm to respond to shear force.
  • Thumbnail Image
    Item
    Morphological adaptations facilitating attachment for archaeal viruses
    (Montana State University - Bozeman, College of Letters & Science, 2019) Hartman, Ross Alan; Chairperson, Graduate Committee: Mark J. Young
    Little is known regarding the attachment and entry process for any archaeal virus. The virus capsid serves multiple biological functions including: to protect the viral genome during transit between host cells, and to facilitate attachment and entry of the viral genome to a new host cell. Virus attachment is conducted without expenditure of stored chemical energy i.e. ATP hydrolysis. Instead, virus particles depend on diffusion for transportation and attachment from one host cell to another. This thesis examines the attachment process for two archaeal viruses. Sulfolobus turreted icosahedral virus (STIV) is well characterized for an archaeal virus. Still, no information is available concerning STIV attachment or entry. The research presented here shows that STIV attaches to a host cell pilus. Furthermore, combining the previously determined atomic model for the virus, with cryo-electron tomography, a pseudo-atomic model of the interaction between the host pilus and virus was determined. Based on this data, a model is proposed for the maturation of the virus capsid from a noninfectious to an infectious form, by dissociation of accessory proteins. Finally, a locus of genes is identified in the host cell, encoding proteins essential for viral infection, that are likely components of the pili structure recognized by STIV. The isolation of a new archaeal virus, Thermoproteus Piliferous Virus 1 (TSPV1), is also presented here. The TSPV1 virion has numerous fibrous extensions from the capsid, of varying length, that are the first observed for any virus. The capsid 2-3nm fibers likely serve to extend the effective surface area of the virus, facilitating attachment to host cells. Characterization of this new virus was conducted, including genome sequencing and determination of the protein identity for the capsid fibers. The research presented here provides a substantial advancement in our knowledge of the attachment process for archaeal viruses. Attachment to host pili is now emerging as a common theme for archaeal viruses. Furthermore, the isolation of the new archaeal virus TSPV1 demonstrates a novel strategy to increase the probability of interaction between a virus and host cell.
  • Thumbnail Image
    Item
    Relating protein structure to function: how protein dynamics maximizes energy gained by electron transfer in an anaerobic energy conservation mechanism
    (Montana State University - Bozeman, College of Letters & Science, 2019) Berry, Luke Montgomery; Chairperson, Graduate Committee: Brian Bothner; Angela Patterson, Natasha Pence, John Peters and Brian Bothner were co-authors of the article, 'Hydrogen deuterium exchange mass spectrometry of oxygen sensitive proteins' in the journal 'Bio-protocols' which is contained within this dissertation.; Saroj Poudel, Monika Tokmina-Lukaszewska, Daniel R. Colman, Diep M.N. Nguyen, Gerrit J. Schut, Micheal W.W. Adams, John W. Peters, Eric S. Boyd and Brian Bothner were co-authors of the article, 'H/D exchange mass spectrometry and statistical coupling analysis reveal a role for allostery in a ferredoxin-dependent bifurcating transhydrogenase catalytic cycle' in the journal 'Biochimica et biophysica acta (BBA) - general subjects' which is contained within this dissertation.; Monika Tokmina-Lukaszewska, Derek F. Harris, Oleg A. Zadvornyy, Simone Raugei, John W. Peters, Lance C. Seefeldt and Brian Bothner were co-authors of the article, 'Combining in-solution and computational methods to characterize the structure-function relationship of the nitrogengase systems' which is contained within this dissertation.; Hayden Kallas, Derek F. Harris, Monika Tokmina-Lukaszewska, Simone Raugei, Lance C. Seefeldt and Brian Bothner were co-authors of the article, 'Iron protein docking effects on MOFE protein dynamics: function of negative cooperativity and the regulation of electron trasfer' which is contained within this dissertation.
    Reduced ferredoxin (Fd) plays a critical role in anaerobic metabolism by acting as an alternative source of energy to adenosine triphosphate (ATP). The reduction potential of Fd is low (-450 mV) making it difficult to reduce individually. However, it has recently been discovered that a unique mechanism known as electron bifurcation allows anaerobic organisms to reduce Fd without suffering a loss of energy. Electron bifurcation was originally discovered in complex III of the electron transport chain, and increased the efficiency of the proton motive force without an overall change in the electron flow, minimizing energy loss. EB accomplishes this is by coupling a favorable (exergonic) and unfavorable (endergonic) reduction reaction. The exergonic reaction produces a singly reduced cofactor with a sufficiently negative reduction potential to allow the endergonic process to proceed. This allows anaerobic organisms to couple the formation of NADH, with the reduction of Fd. A detail of interest in the bifurcating mechanism is how these enzymes regulate the flow of electrons down the exergonic and endergonic branches to prevent multiple electrons from traveling down the exergonic branch. It is hypothesized that changes in the protein conformation alter the distance between cofactors altering the rate of electron transfer. To fully understand how changes in a protein's conformation regulates electron transfer in electron bifurcation we used a suite of in-solution techniques, such as H/D exchange and chemical cross-linking coupled to mass spectrometry to characterize the structure and dynamics of the model bifurcating enzyme, NADH-dependent ferredoxin-NADP+ oxidoreductase (Nfn), during the different steps of electron bifurcation. Additionally we also set out to use these techniques to characterize the structure and dynamics of the nitrogenase systems in order to obtain biophysical evidence of negative cooperativity in the various nitrogenase systems.
  • Thumbnail Image
    Item
    Predicting anticancer peptides and protein function with deep learning
    (Montana State University - Bozeman, College of Engineering, 2020) Lane, Nathaniel Patrick; Chairperson, Graduate Committee: Indika Kahanda
    Anticancer peptides (ACPs) are a promising alternative to traditional chemotherapy. To aid wet-lab and clinical research, there is a growing interest in using machine learning techniques to help identify good ACP candidates computationally. In this work, we develop DeepACPpred, a novel deep learning model for predicting ACPs using their amino acid sequences. Using several gold-standard ACP datasets, we demonstrate that DeepACPpred is highly effective compared to state-of-the-art ACP prediction models. Furthermore, we adapt the above neural network model for predicting protein function and report our experience with participating in a community-wide large-scale assessment of protein functional annotation tools.
  • Thumbnail Image
    Item
    Multivalently presented carbohydrates can be used as drug delivery vehicles and to study protein carbohydrate interactions
    (Montana State University - Bozeman, College of Letters & Science, 2018) VanKoten, Harrison Wesley; Chairperson, Graduate Committee: Mary J. Cloninger; Wendy M. Dlakic, Robert Engel and Mary J. Cloninger were co-authors of the article, 'Synthesis and biological activity of highly cationic dendrimer antibiotics' in the journal 'Molecular pharmaceutics' which is contained within this thesis.; Rebecca Moore, Coleen Murphy and Mary J. Cloninger were co-authors of the article, 'Probing the LEC-1 and LEC-10 oxidative stress pathway in Caenorhabditis elegans using GALBeta1-4FUC dendrimers' which is contained within this thesis.
    Dendrimers in general excel as drug delivery vehicles since there are many different ways they can be assembled and different ways to tailor them to the system being studied. Glycodendrimers are generally nontoxic and can be further developed to meet the needs of what is being studied. For instance, in the studies below, a quaternity ammonium compound (QAC) has been attached to a glycodendrimer to determine the antimicrobial activity of a multivalently presented QAC in studies of minimum inhibitory concentration (MIC), biofilm prevention, and bacterial resistance. Results include comparable MICs to those of established antibiotics, prevention of biofilm formation but not disruption of an established biofilm, and establishment of multivalency as a strategy to counteract bacterial resistance. Another heterogeneously functionalized dendrimer was synthesized to study drug release characteristics of a prodrug attached to a cleavable substrate. In these studies, the upregulation of several proteins during cancer progression was taken advantage of including; MMP-2, -7, -9, and galectin-3. Glycodendrimers are tools used to study protein carbohydrate interactions. Study of galectins and their corresponding Beta-galactosides have illuminated their role in several essential biological processes. Multivalency plays a crucial role in many protein-carbohydrate interactions. Galectins are known to interact multivalently with various ligands. Although the role of galectins in this process is not yet fully understood, galectins have been proposed to serve as protective proteins during periods of high oxidative stress. We describe the synthesis of GalBeta1-4Fuc functionalized poly(amidoamine) (PAMAM) dendrimers in order to test C. elegans' response to high oxidative stress. In order to test the function of GalBeta1-4Fuc in vivo, C. elegans were treated with RNAi to knockdown lec-1 or lec-10, and then treated with glycodendrimer and exposed to oxidative stress. C. elegans that were pre-treated with the glycodendrimers were less susceptible to oxidative stress than untreated controls. The glycodendrimers mainly appeared within the digestive tract of the worms, and uptake into the vulva and proximal gonads could also be observed in some instances. This study indicates that multivalently presented GalBeta1-4Fuc can protect C. elegans from oxidative stress by binding to galectins.
  • Thumbnail Image
    Item
    Policy development: practice improvement, blind sweep fetal fibronectin collection
    (Montana State University - Bozeman, College of Nursing, 2019) Liedtka-Holmquist, Diana Elizabeth; Chairperson, Graduate Committee: Julie Ruff
    Recognizing preterm labor can help guide the management of care of the mother and fetus between the obstetrician and registered nurse. A simple test called the rapid fetal fibronectin (fFN) can detect proteins that are indicators of preterm delivery. A trained registered nurse can perform this simple test, in which a swab is placed in the posterior fornix of the vagina. The March of Dimes has created a pathway for standardized preterm labor assessment developing a Preterm Labor Assessment Tool (PLAT) for hospitals to aid in the reduction preterm labor and deliveries. A positive fFN test allows for antenatal steroids and preparation for optimal neonatal care, whereas a negative fFN test allows for less intervention, avoidance of unnecessary medical treatment and hospitalization, and the provision of reassurance to both obstetrician and patient. The purpose of this project was to develop an evidence based policy that would guide and support practice improvements for the blind sweep fFN collection method. This evidence based protocol will allow trained registered nurses to perform a blind sweep fFN test without an obstetrician or residents' supervision. By performing the fFN tests on patients who present with preterm labor signs and symptoms, obstetricians will be able to recognize preterm labor assessment and initiate early treatment.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.