Theses and Dissertations at Montana State University (MSU)

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/732

Browse

Search Results

Now showing 1 - 3 of 3
  • Thumbnail Image
    Item
    Design, fabrication, and implementation of an embedded flight computer in support of the ionospheric-thermospheric scanning photometer for ion-neutral studies CubeSat mission
    (Montana State University - Bozeman, College of Engineering, 2017) Handley, Matthew Lee; Chairperson, Graduate Committee: Brock LaMeres
    As society increasingly relies on space-based assets for everything from GPS-based directions and global communications to human-driven research on the ISS, our understanding of space weather becomes vital. Timely predictions of a solar storm's impact on the ionosphere are imperative to safing these assets before damaging storms hit, while minimizing downtime during lighter storms. The topside transition region (TTR) is a global boundary where the concentration of O+ significantly decreases due to charge exchange with H+ and He+ from the thermosphere, as well as protons and neutral atomic oxygen from the plasmasphere. When high-energy electrons in the ionosphere intercept O+ ions, they combine and release photons at 135.6-nm. The Ionospheric-Thermospheric Scanning Photometer for Ion-Neutral Studies (IT-SPINS) mission will provide 135.6-nm nightglow measurements from a 3U CubeSat equipped with a high-sensitivity UV photometer. The CubeSat will spin about orbit normal, sweeping its photometer field of view through the ionosphere. Ground-based post processing will yield 2D altitude/in-track images of O+ density, providing weighting parameters for models of the TTR. This low-earth orbit (LEO) small satellite mission is a collaboration between the John Hopkins University Applied Physics Laboratory, SRI International, and Montana State University (MSU). This research describes the design, fabrication, and implementation of the space flight computer (SFC) hardware and software responsible for handling all commands, telemetry, and scientific data required by this National Science Foundation (NSF) funded mission. The SFC design balances requirements derived from the mission objectives while leveraging heritage hardware and software from MSU's many successful CubeSat missions (HRBE, FIREBIRD, FIREBIRD-II) and payloads (EPISEM) [1-3]. This low-power (100 mW) embedded computer features dual 16- bit PIC microcontrollers running at 16 MHz with only 96 kB of RAM and runs the microC/OS-II real-time operating system (RTOS). The SFC also includes a TCXO-driven mission elapsed time clock with plus or minus 2 ppm temperatures stability, a 1 GB NAND flash for data storage, and interfaces to all other subsystems in the satellite. The SFC has passed all standalone testing. It is currently being integrated and tested with the entire IT-SPINS spacecraft and is planned to fly in late 2018.
  • Thumbnail Image
    Item
    Design, fabrication, and implementation of the energetic particle integrating space environment monitor instrument
    (Montana State University - Bozeman, College of Engineering, 2014) Gunderson, Adam Kristopher; Chairperson, Graduate Committee: Brock LaMeres
    The ability to simultaneously monitor spatial and temporal variations in penetrating radiation above the atmosphere is important for understanding both the near Earth radiation environment and as input for developing more accurate space weather models. These models currently lack high resolution multi-point measurements to accurately portray the spatial and temporal variability of the radiation belts. To obtain data that may uncover the small-scale spatio-temporal variability of the areas around the planet known as the Van Allen Radiation Belts measurements must be made across a distributed array of satellites. The most recent decadal survey on solar and space physics states that the CubeSat platform is ideal for making these type of measurements [43]. The Energetic Particle Integrating Space Environment monitor instrument (EPISEM) will launch aboard eight CubeSat's as a part of the Edison Demonstration of Smallsat Networks (EDSN) mission. By being distributed across a geographically dispersed area, EPISEM will help fill the data gap by measuring the location and intensity of energetic charged particles simultaneously. This research describes the fabrication approach of the miniaturized radiation detection instrument aboard the EPISEM instrument and operational considerations unique to missions using many identical spacecraft and instruments. The EPISEM payload was specifically designed for CubeSats; leveraging heritage from the payload operating aboard Montana State University's Hiscock Radiation Belt Explorer (HRBE), launched in October 2011. The EDSN project is based at NASAs Ames Research Center, Moffett Field, California, and is funded by the Small Spacecraft Technology Program (SSTP) in NASAs Office of the Chief Technologist (OCT) at NASA Headquarters, Washington. The EDSN satellites are planned to fly late 2014 as secondary payloads on a DoD Operationally Responsive Space (ORS) mission that will launch into space from Kauai, Hawaii on a Super Strypi launch vehicle. The EPISEM payload was designed, built, tested, and delivered to NASA Ames by the Space Science and Engineering Laboratory at Montana State University.
  • Thumbnail Image
    Item
    Focused investigations of relativistic electron burst intensity, range, and dynamics space weather mission global positioning system
    (Montana State University - Bozeman, College of Engineering, 2011) Wilz, Mackenzie Charles; Chairperson, Graduate Committee: Joseph A. Shaw
    The FIREBIRD mission (Focused Investigations of Relativistic Electron Burst Intensity, Range, and Dynamics) is a low earth orbit, space weather, CubeSat mission which is comprised of a two satellite constellation. This constellation is responsible for the measurement of relativistic electron microbursts with very fine spatial and temporal resolution. To achieve the spatial and temporal requirements of the mission, a global positioning system (GPS), for the purpose of navigation position and timing, is to be implemented on both satellites within the constellation. The integration and testing of this subsystem is integral to the mission's success. The GPS hardware must be capable of fulfilling the requirements of the mission in order for the science data to be interpreted reliably. This means that the GPS hardware must not only be accurate but precise as well. Also, a driver must be implemented in software in order for this data from the GPS hardware to be received, interpreted, and stored by the command and data handling subsystem.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.