Land Resources & Environmental Sciences
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/11
The Department of Land Resources and Environmental Sciences at Montana State Universityoffers integrative, multi-disciplinary, science-based degree programs at the B.S., M.S., and Ph.D. levels.
Browse
3 results
Search Results
Item Retrospective use of integrative taxonomy in classical biological control: The unintentional introduction of the weevil Rhinusa dieckmanni to North America(Elsevier BV, 2023-08) Toševski, Ivo; Sing, Sharlene E.; Caldara, Roberto; Weaver, David K.; Jović, Jelena; Krstić, Oliver; Hinz, Hariet L.A seed-feeding weevil introduced to North America (NA) as a biological control agent of the invasive toadflax Linaria dalmatica (L.) Mill., identified then as Gymnetron antirrhini “Dalmatian host race” and subsequently confirmed as established, was revealed through our study to be a separate species, i.e., Rhinusa dieckmanni (Behne) (Coleoptera: Curculionidae). This weevil species was presumed to be endemic in its native range, with a distribution restricted to Mount Rila in southwestern Bulgaria. We conducted a comprehensive study of seed-feeding weevils associated with L. dalmatica, L. dalmatica ssp. macedonica (Griseb.) D.A. Sutton, L. genistifolia (L.) Mill., and L. grandiflora Desf. across a broad geographic area of their native range. Those results revealed that all four host plants were used by R. dieckmanni and thus the native geographic range of the species is wider than expected, encompassing the Balkans and the Anatolian Plateau. Our observations suggest that phenotypes of this weevil are highly variable and dependent on the seed capsule size of the Linaria host population. The haplotype network based on mitochondrial COII, 16S genes, and nuclear EF 1-α gene genealogy confirmed the conspecific nature of geographically distant weevil populations, that is, R. dieckmanni phenotypes utilizing L. genistifolia, L. dalmatica, and L. grandiflora for larval development. Specimens collected from L. dalmatica in the northwestern USA shared the same haplotypes as samples from L. dalmatica ssp. macedonica in southwestern North Macedonia, supporting the known introduction history of the North American population. Females from these populations have relatively short rostrums, which may limit their reproductive success on North American invasive L. dalmatica with larger seed capsules.Item Abutilon theophrasti’s Resilience against Allelochemical-Based Weed Management in Sustainable Agriculture – Due to Collection of Highly Advantageous Microorganisms?(MDPI AG, 2023-02) Tabaglio, Vincenzo; Fiorini, Andrea; Sterling, Tracy M.; Schulz, MargotAbutilon theophrasti Medik. (velvetleaf) is a problematic annual weed in field crops which has invaded many temperate parts of the world. Since the loss of crop yields can be extensive, approaches to manage the weed include not only conventional methods, but also biological methods, for instance by microorganisms releasing phytotoxins and plant-derived allelochemicals. Additionally, benzoxazinoid-rich rye mulches effective in managing common weeds like Amaranthus retroflexus L. have been tested for this purpose. However, recent methods for biological control are still unreliable in terms of intensity and duration. Rye mulches were also ineffective in managing velvetleaf. In this review, we present the attempts to reduce velvetleaf infestation by biological methods and discuss possible reasons for the failure. The resilience of velvetleaf may be due to the extraordinary capacity of the plant to collect, for its own survival, the most suitable microorganisms from a given farming site, genetic and epigenetic adaptations, and a high stress memory. Such properties may have developed together with other advantageous abilities during selection by humans when the plant was used as a crop. Rewilding could be responsible for improving the microbiomes of A. theophrasti.Item Do patterns of insect mortality in temperate and tropical zones have broader implications for insect ecology and pest management?(PeerJ, 2022-04) Pinto, José R. L.; Fernandes, Odair A.; Higley, Leon G.; Peterson, Robert K. D.Background Understanding how biotic and abiotic factors affect insect mortality is crucial for both fundamental knowledge of population ecology and for successful pest management. However, because these factors are difficult to quantify and interpret, patterns and dynamics of insect mortality remain unclear, especially comparative mortality across climate zones. Life table analysis provides robust information for quantifying population mortality and population parameters. Methods In this study, we estimated cause-of-death probabilities and irreplaceable mortality (the portion of mortality that cannot be replaced by another cause or combination of causes) using a Multiple Decrement Life Table (MDLT) analysis of 268 insect life tables from 107 peer-reviewed journal articles. In particular, we analyzed insect mortality between temperate and tropical climate zones. Results Surprisingly, our results suggest that non-natural enemy factors (abiotic) were the major source of insect mortality in both temperate and tropical zones. In addition, we observed that irreplaceable mortality from predators in tropical zones was 3.7-fold greater than in temperate zones. In contrast, irreplaceable mortality from parasitoids and pathogens was low and not different between temperate and tropical zones. Surprisingly, we did not observe differences in natural enemy and non-natural enemy factors based on whether the insect species was native or non-native. We suggest that characterizing predation should be a high priority in tropical conditions. Furthermore, because mortality from parasitoids was low in both tropical and temperate zones, this mortality needs to be better understood, especially as it relates to biological control and integrated pest management.