Scholarship & Research
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/1
Browse
31 results
Search Results
Item Breaking the Red Limit: Efficient Trapping of Long-Wavelength Excitations in Chlorophyll-f-Containing Photosystem I(Elsevier BV, 2021-01) Tros, Martijn; Mascoli, Vincenzo; Shen, Gaozhong; Ho, Ming-Yang; Bersanini, Luca; Gisriel, Christopher J.; Bryant, Donald A.; Croce, RobertaBackground: Food insecurity (FI) is an important public health issue for US veterans. For many veterans, civilian life is fraught with service-incurred health issues and socioeconomic challenges, each risk factors for FI. The FI literature on veterans is limited due to insufficient coverage of the topic’s complexity and the methods used to study it in this population. No published analysis has evaluated how FI has been examined in US veterans. Objectives: We assessed how FI has been examined in US military veterans by identifying (1) the major content areas, or domains, studied in association with FI and (2) the existing research gaps. Methods: A scoping literature review was conducted to map the main research domains of the FI literature and identify knowledge gaps. Electronic database and hand searches identified potentially relevant studies (n = 61). Data extraction, utilizing a standardized set of design parameters, was completed. Duplicate removal and application of inclusion/exclusion criteria resulted in the studies (n = 21) selected for critical review. Results: Eight research domains were determined: FI prevalence, health status, dietary practices, health care utilization, economic instability, homelessness/housing instability, food program participation, and community/emergency preparedness—the most dominant was health status and the least dominant were social determinants (ie, homelessness/housing instability, food program participation). Research on validity and usability of FI assessment methods in veterans was virtually absent. Military service factors, longitudinal effects, FI among women, intervention effectiveness, and other areas lacked sufficient inquiry. Conclusion: Research is required on lesser examined content areas and methodology to optimize surveillance and policy for veteran FI.Item Niche expansion for phototrophic sulfur bacteria at the Proterozoic - Phanerozoic transition(2020-07) Cui, Xingqian; Liu, Xiao-Lei; Shen, Gaozhong; Ma, Jian; Husain, Fatima; Rocher, Donald; Zumberge, John E.; Bryant, Donald A.; Summons, Roger E.Fossilized carotenoid hydrocarbons provide a window into the physiology and biochemistry of ancient microbial phototrophic communities for which only a sparse and incomplete fossil record exists. However, accurate interpretation of carotenoid-derived biomarkers requires detailed knowledge of the carotenoid inventories of contemporary phototrophs and their physiologies. Here we report two distinct patterns of fossilized C40 diaromatic carotenoids. Phanerozoic marine settings show distributions of diaromatic hydrocarbons dominated by isorenieratane, a biomarker derived from low-light-adapted phototrophic green sulfur bacteria. In contrast, isorenieratane is only a minor constituent within Neoproterozoic marine sediments and Phanerozoic lacustrine paleoenvironments, for which the major compounds detected are renierapurpurane and renieratane, together with some novel C39 and C38 carotenoid degradation products. This latter pattern can be traced to cyanobacteria as shown by analyses of cultured taxa and laboratory simulations of sedimentary diagenesis. The cyanobacterial carotenoid synechoxanthin, and its immediate biosynthetic precursors, contain thermally labile, aromatic carboxylic-acid functional groups, which upon hydrogenation and mild heating yield mixtures of products that closely resemble those found in the Proterozoic fossil record. The Neoproterozoic–Phanerozoic transition in fossil carotenoid patterns likely reflects a step change in the surface sulfur inventory that afforded opportunities for the expansion of phototropic sulfur bacteria in marine ecosystems. Furthermore, this expansion might have also coincided with a major change in physiology. One possibility is that the green sulfur bacteria developed the capacity to oxidize sulfide fully to sulfate, an innovation which would have significantly increased their capacity for photosynthetic carbon fixation.Item Short-Term Stable Isotope Probing of Proteins Reveals Taxa Incorporating Inorganic Carbon in a Hot Spring Microbial Mat(2020-03) Steinke, Laurey; Slysz, Gordon; Lipton, Mary S.; Klatt, Christian; Moran, James J.; Romine, Margie F.; Wood, Jason M.; Anderson, Gordon; Bryant, Donald A.; Ward, David M.The upper green layer of the chlorophototrophic microbial mats associated with the alkaline siliceous hot springs of Yellowstone National Park consists of oxygenic cyanobacteria (Synechococcus spp.), anoxygenic Roseiflexus spp., and several other anoxygenic chlorophototrophs. Synechococcus spp. are believed to be the main fixers of inorganic carbon (Ci), but some evidence suggests that Roseiflexus spp. also contribute to inorganic carbon fixation during low-light, anoxic morning periods. Contributions of other phototrophic taxa have not been investigated. In order to follow the pathway of Ci incorporation into different taxa, mat samples were incubated with [13C]bicarbonate for 3 h during the early-morning, low-light anoxic period. Extracted proteins were treated with trypsin and analyzed by mass spectrometry, leading to peptide identifications and peptide isotopic profile signatures containing evidence of 13C label incorporation. A total of 25,483 peptides, corresponding to 7,221 proteins, were identified from spectral features and associated with mat taxa by comparison to metagenomic assembly sequences. A total of 1,417 peptides, derived from 720 proteins, were detectably labeled with 13C. Most 13C-labeled peptides were derived from proteins of Synechococcus spp. and Roseiflexus spp. Chaperones and proteins of carbohydrate metabolism were most abundantly labeled. Proteins involved in photosynthesis, Ci fixation, and N2 fixation were also labeled in Synechococcus spp. Importantly, most proteins of the 3-hydroxypropionate bi-cycle for Ci fixation in Roseiflexus spp. were labeled, establishing that members of this taxocene contribute to Ci fixation. Other taxa showed much lower [13C]bicarbonate incorporation.Item Biosynthesis of the modified tetrapyrroles - the pigments of life(2021-01) Bryant, Donald A.; Hunter, C. Neil; Warren, Martin J.Modified tetrapyrroles are large macrocyclic compounds, consisting of diverse conjugation and metal chelation systems and imparting an array of colors to the biological structures that contain them. Tetrapyrroles represent some of the most complex small molecules synthesized by cells and are involved in many essential processes that are fundamental to life on Earth, including photosynthesis, respiration, and catalysis. These molecules are all derived from a common template through a series of enzyme-mediated transformations that alter the oxidation state of the macrocycle and also modify its size, its side-chain composition, and the nature of the centrally chelated metal ion. The different modified tetrapyrroles include chlorophylls, hemes, siroheme, corrins (including vitamin B12), coenzyme F430, heme d1, and bilins. After nearly a century of study, almost all of the more than 90 different enzymes that synthesize this family of compounds are now known, and expression of reconstructed operons in heterologous hosts has confirmed that most pathways are complete. Aside from the highly diverse nature of the chemical reactions catalyzed, an interesting aspect of comparative biochemistry is to see how different enzymes and even entire pathways have evolved to perform alternative chemical reactions to produce the same end products in the presence and absence of oxygen. Although there is still much to learn, our current understanding of tetrapyrrole biogenesis represents a remarkable biochemical milestone that is summarized in this review.Item Harvesting far-red light: Functional integration of chlorophyll f into Photosystem I complexes of Synechococcus sp. PCC 7002(2020-08) Tros, Martijn; Bersanini, Luca; Shen, Gaozhong; Ho, Ming-Yang; van Stokkum, Ivo H. M.; Bryant, Donald A.; Croce, RobertaThe heterologous expression of the far-red absorbing chlorophyll (Chl) f in organisms that do not synthesize this pigment has been suggested as a viable solution to expand the solar spectrum that drives oxygenic photosynthesis. In this study, we investigate the functional binding of Chl f to the Photosystem I (PSI) of the cyanobacterium Synechococcus 7002, which has been engineered to express the Chl f synthase gene. By optimizing growth light conditions, one-to-four Chl f pigments were found in the complexes. By using a range of spectroscopic techniques, isolated PSI trimeric complexes were investigated to determine how the insertion of Chl f affects excitation energy transfer and trapping efficiency. The results show that the Chls f are functionally connected to the reaction center of the PSI complex and their presence does not change the overall pigment organization of the complex. Chl f substitutes Chl a (but not the Chl a red forms) while maintaining efficient energy transfer within the PSI complex. At the same time, the introduction of Chl f extends the photosynthetically active radiation of the new hybrid PSI complexes up to 750 nm, which is advantageous in far-red light enriched environments. These conclusions provide insights to engineer the photosynthetic machinery of crops to include Chl f and therefore increase the light-harvesting capability of photosynthesis.Item Extensive remodeling of the photosynthetic apparatus alters energy transfer among photosynthetic complexes when cyanobacteria acclimate to far-red light(2020-04) Ho, Ming-Yang; Niedzwiedzki, Dariusz M.; MacGregor-Chatwin, Craig; Gerstenecker, Gary; Hunter, C. Neil; Blankenship, Robert E.; Bryant, Donald A.Some cyanobacteria remodel their photosynthetic apparatus by a process known as Far-Red Light Photoacclimation (FaRLiP). Specific subunits of the phycobilisome (PBS), photosystem I (PSI), and photosystem II (PSII) complexes produced in visible light are replaced by paralogous subunits encoded within a conserved FaRLiP gene cluster when cells are grown in far-red light (FRL; λ = 700–800 nm). FRL-PSII complexes from the FaRLiP cyanobacterium, Synechococcus sp. PCC 7335, were purified and shown to contain Chl a, Chl d, Chl f, and pheophytin a, while FRL-PSI complexes contained only Chl a and Chl f. The spectroscopic properties of purified photosynthetic complexes from Synechococcus sp. PCC 7335 were determined individually, and energy transfer kinetics among PBS, PSII, and PSI were analyzed by time-resolved fluorescence (TRF) spectroscopy. Direct energy transfer from PSII to PSI was observed in cells (and thylakoids) grown in red light (RL), and possible routes of energy transfer in both RL- and FRL-grown cells were inferred. Three structural arrangements for RL-PSI were observed by atomic force microscopy of thylakoid membranes, but only arrays of trimeric FRL-PSI were observed in thylakoids from FRL-grown cells. Cells grown in FRL synthesized the FRL-specific complexes but also continued to synthesize some PBS and PSII complexes identical to those produced in RL. Although the light-harvesting efficiency of photosynthetic complexes produced in FRL might be lower in white light than the complexes produced in cells acclimated to white light, the FRL-complexes provide cells with the flexibility to utilize both visible and FRL to support oxygenic photosynthesis.Item The structure of Photosystem I acclimated to far-red light illuminates an ecologically important acclimation process in photosynthesis(2020-02) Gisriel, Christopher; Shen, Gaozhong; Kurashov, Vasily; Ho, Ming-Yang; Zhang, Shangji; Williams, Dewight; Golbeck, John H.; Fromme, Petra; Bryant, Donald A.Phototrophic organisms are superbly adapted to different light environments but often must acclimate to challenging competition for visible light wavelengths in their niches. Some cyanobacteria overcome this challenge by expressing paralogous photosynthetic proteins and by synthesizing and incorporating ~8% chlorophyll f into their Photosystem I (PSI) complexes, enabling them to grow under far-red light (FRL). We solved the structure of FRL-acclimated PSI from the cyanobacterium Fischerella thermalis PCC 7521 by single-particle, cryo–electron microscopy to understand its structural and functional differences. Four binding sites occupied by chlorophyll f are proposed. Subtle structural changes enable FRL-adapted PSI to extend light utilization for oxygenic photosynthesis to nearly 800 nm. This structure provides a platform for understanding FRL-driven photosynthesis and illustrates the robustness of adaptive and acclimation mechanisms in nature.Item Reaction centers of the thermophilic microaerophile, Chloracidobacterium thermophilum (Acidobacteria) I: biochemical and biophysical characterization(Springer Science and Business Media LLC, 2019-06) He, Zhihui; Ferlez, Bryan; Kurashov, Vasily; Tank, Marcus; Golbeck, John H.; Bryant, Donald A.Chloracidobacterium thermophilum is a microaerophilic, anoxygenic member of the green chlorophototrophic bacteria. This bacterium is the first characterized oxygen-requiring chlorophototroph with chlorosomes, the FMO protein, and homodimeric type-1 reaction centers (RCs). The RCs of C. thermophilum are also unique because they contain three types of chlorophylls, bacteriochlorophyll aP esterified with phytol, Chl aPD esterified with D2,6- phytadienol, and Zn-BChl aP¢ esterified with phytol, in the approximate molar ratio 32:24:4. The light-induced difference spectrum of these RCs had a bleaching maximum at 839 nm and also revealed an electrochromic bandshift that is probably derived from a BChl a molecule near P840+. The FX [4Fe-4S] cluster had a midpoint potential of ca. –581 mV, and the spectroscopic properties of the P+ FX– spin-polarized radical-pair were very similar to those of reaction centers of heliobacteria and green sulfur bacteria. The data further indicate that electron transfer occurs directly from A0– to FX, as occurs in other homodimeric Type-1 RCs. Washing experiments with isolated membranes suggested that the PscB subunit of these reaction centers is more tightly bound than PshB in heliobacteria. Thus, the reaction centers of C. thermophilum have some properties that resemble other homodimeric reaction centers but also have specific properties that are more similar to those of Photosystem I. These differences probably contribute to protection of the electron transfer chain from oxygen, contributing to the oxygen tolerance of this microaerophile.Item Cyanobacteriochrome-based photoswitchable adenylyl cyclases (cPACs) for broad spectrum light regulation of cAMP levels in cells(2018-06) Blain-Hartung, Matthew; Rockwell, Nathan C.; Moreno, Marcus V.; Martin, Shelley S.; Gan, Fei; Bryant, Donald A.; Lagarias, J. ClarkClass III adenylyl cyclases generate the ubiquitous second messenger cAMP from ATP often in response to environmental or cellular cues. During evolution, soluble adenylyl cyclase catalytic domains have been repeatedly juxtaposed with signal-input domains to place cAMP synthesis under the control of a wide variety of these environmental and endogenous signals. Adenylyl cyclases with light-sensing domains have proliferated in photosynthetic species depending on light as an energy source, yet are also widespread in nonphotosynthetic species. Among such naturally occurring light sensors, several flavin-based photoactivated adenylyl cyclases (PACs) have been adopted as optogenetic tools to manipulate cellular processes with blue light. In this report, we report the discovery of a cyanobacteriochrome-based photoswitchable adenylyl cyclase (cPAC) from the cyanobacterium Microcoleus sp. PCC 7113. Unlike flavin-dependent PACs, which must thermally decay to be deactivated, cPAC exhibits a bistable photocycle whose adenylyl cyclase could be reversibly activated and inactivated by blue and green light, respectively. Through domain exchange experiments, we also document the ability to extend the wavelength-sensing specificity of cPAC into the near IR. In summary, our work has uncovered a cyanobacteriochrome-based adenylyl cyclase that holds great potential for the design of bistable photoswitchable adenylyl cyclases to fine-tune cAMP-regulated processes in cells, tissues, and whole organisms with light across the visible spectrum and into the near IR.Item Indirect Interspecies Regulation: Transcriptional and Physiological Responses of a Cyanobacterium to Heterotrophic Partnership(2017-03) Bernstein, Hans C.; McClure, Ryan S.; Thiel, Vera; Sadler, Natalie C.; Kim, Young-Mo; Chrisler, William B.; Hill, Eric A.; Bryant, Donald A.; Romine, Margaret F.; Jansson, Janet K.; Fredrickson, Jim K.; Beliaev, Alexander S.The mechanisms by which microbes interact in communities remain poorly understood. Here, we interrogated specific interactions between photoautotrophic and heterotrophic members of a model consortium to infer mechanisms that mediate metabolic coupling and acclimation to partnership. This binary consortium was composed of a cyanobacterium, Thermosynechococcus elongatus BP-1, which supported growth of an obligate aerobic heterotroph, Meiothermus ruber strain A, by providing organic carbon, O2, and reduced nitrogen. Species-resolved transcriptomic analyses were used in combination with growth and photosynthesis kinetics to infer interactions and the environmental context under which they occur. We found that the efficiency of biomass production and resistance to stress induced by high levels of dissolved O2 increased, beyond axenic performance, as a result of heterotrophic partnership. Coordinated transcriptional responses transcending both species were observed and used to infer specific interactions resulting from the synthesis and exchange of resources. The cyanobacterium responded to heterotrophic partnership by altering expression of core genes involved with photosynthesis, carbon uptake/fixation, vitamin synthesis, and scavenging of reactive oxygen species (ROS). IMPORTANCE This study elucidates how a cyanobacterial primary producer acclimates to heterotrophic partnership by modulating the expression levels of key metabolic genes. Heterotrophic bacteria can indirectly regulate the physiology of the photoautotrophic primary producers, resulting in physiological changes identified here, such as increased intracellular ROS. Some of the interactions inferred from this model system represent putative principles of metabolic coupling in phototrophic-heterotrophic partnerships.