Scholarship & Research
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/1
Browse
1 results
Search Results
Item Using genetic and genomic techniques to uncover cryptic diversity for improving aquatic invasive plant management(Montana State University - Bozeman, College of Agriculture, 2021) Chorak, Gregory Michael Thomas; Chairperson, Graduate Committee: Ryan Thum; This is a manuscript style paper that includes co-authored chapters.Genetic diversity can be important at many levels of invasive species management. And, for different questions, it matters at which level we measure diversity to understand its relevance. Some invaders may look similar to other species, so identifying the species to be managed may be difficult without genetic tools. Once the species has been identified, understanding the diversity in that species may be important to identify management units, invasive traits, and the possibility of spread. Finally, understanding how the alleles an individual possesses determine the traits expressed can give managers the tools to control for unwanted traits of an invasive species. In this body of work, I uncover diversity at the species/taxon level, the genotype/clone level, and finally at the gene level in invasive aquatic weed species. At the taxon level, I found that one invasion of aquatic weeds in the northeastern US was actually two or more separate invasions and taxa. At the genotype level, I found that the same genotype responds the same to a common herbicide management regardless of where it is found, and that different genotypes have varying responses to a common herbicide treatment. And, at the gene level, I found that different genotypes with different growth rates have different gene expression in the control and transcriptional response to a common herbicide treatment. At each of these levels, managers have questions and concerns about management decisions. Understanding that there were two unique taxa in what was considered one invasion informed managers that there may be variance in management relevant traits between the two. In the genotype level study, we learned that determining which clones are present in a lake slated for herbicide management may inform which herbicides to use. And, at the gene level, we are starting to understand the molecular process of management relevant phenotypes so that one day managers can screen for molecular markers that will reveal herbicide response of individuals slated for management.