Scholarship & Research
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/1
Browse
2 results
Search Results
Item Agile collaboration: Citizen science as a transdisciplinary approach to heliophysics(Frontiers Media SA, 2023-04) Ledvina, Vincent; Brandt, Laura; MacDonald, Elizabeth; Frissell, Nathaniel; Anderson, Justin; Chen, Thomas Y.; French, Ryan J.; Mare, Francesca Di; Grover, Andrea; Sigsbee, Kristine; Gallardo-Lacourt, Bea; Lach, Donna; Shaw, Joseph A.; Hunnekuhl, Michael; Kosar, Burcu; Barkhouse, Wayne; Young, Tim; Kedhambadi, Chandresh; Ozturk, Dogacan S.; Claudepierre, Seth G.; Dong, Chuanfei; Witteman, Andy; Kuzub, Jeremy; Sinha, GunjanCitizen science connects scientists with the public to enable discovery, engaging broad audiences across the world. There are many attributes that make citizen science an asset to the field of heliophysics, including agile collaboration. Agility is the extent to which a person, group of people, technology, or project can work efficiently, pivot, and adapt to adversity. Citizen scientists are agile; they are adaptable and responsive. Citizen science projects and their underlying technology platforms are also agile in the software development sense, by utilizing beta testing and short timeframes to pivot in response to community needs. As they capture scientifically valuable data, citizen scientists can bring expertise from other fields to scientific teams. The impact of citizen science projects and communities means citizen scientists are a bridge between scientists and the public, facilitating the exchange of information. These attributes of citizen scientists form the framework of agile collaboration. In this paper, we contextualize agile collaboration primarily for aurora chasers, a group of citizen scientists actively engaged in projects and independent data gathering. Nevertheless, these insights scale across other domains and projects. Citizen science is an emerging yet proven way of enhancing the current research landscape. To tackle the next-generation’s biggest research problems, agile collaboration with citizen scientists will become necessary.Item Evidence of Microbursts Observed Near the Equatorial Plane in the Outer Van Allen Radiation Belt(2018-08) Shumko, Mykhaylo; Turner, Drew L.; O'Brien, T. P.; Claudepierre, Seth G.; Sample, John; Hartley, D. P.; Fennel, Joseph; Blake, J. Bernard; Gkioulidou, Matina; Mitchell, Donald G.We present the first evidence of electron microbursts observed near the equatorial plane in Earth’s outer radiation belt. We observed the microbursts on 31 March 2017 with the Magnetic Electron Ion Spectrometer and Radiation Belt Storm Probes Ion Composition Experiment on the Van Allen Probes. Microburst electrons with kinetic energies of 29–92 keV were scattered over a substantial range of pitch angles, and over time intervals of 150–500 ms. Furthermore, the microbursts arrived without dispersion in energy, indicating that they were recently scattered near the spacecraft. We have applied the relativistic theory of wave-particle resonant diffusion to the calculated phase space density, revealing that the observed transport of microburst electrons is not consistent with the hypothesized quasi-linear approximation.