Scholarship & Research

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/1

Browse

Search Results

Now showing 1 - 10 of 11
  • Thumbnail Image
    Item
    Investigating the influence of the initial biomass distribution and injection strategies on biofilm-mediated calcite precipitation in porous media
    (2016-09) Hommel, Johannes; Lauchnor, Ellen G.; Gerlach, Robin; Cunningham, Alfred B.; Ebigbo, Anozie; Helmig, Rainer; Class, Holger
    Attachment of bacteria in porous media is a complex mixture of processes resulting in the transfer and immobilization of suspended cells onto a solid surface within the porous medium. Quantifying the rate of attachment is difficult due to the many simultaneous processes possibly involved in attachment, including straining, sorption, and sedimentation, and the difficulties in measuring metabolically active cells attached to porous media. Preliminary experiments confirmed the difficulty associated with measuring active Sporosarcina pasteurii cells attached to porous media. However, attachment is a key process in applications of biofilm-mediated reactions in the subsurface such as microbially induced calcite precipitation. Independent of the exact processes involved, attachment determines both the distribution and the initial amount of attached biomass and as such the initial reaction rate. As direct experimental investigations are difficult, this study is limited to a numerical investigation of the effect of various initial biomass distributions and initial amounts of attached biomass. This is performed for various injection strategies, changing the injection rate as well as alternating between continuous and pulsed injections. The results of this study indicate that, for the selected scenarios, both the initial amount and the distribution of attached biomass have minor influence on the Ca2+2+ precipitation efficiency as well as the distribution of the precipitates compared to the influence of the injection strategy. The influence of the initial biomass distribution on the resulting final distribution of the precipitated calcite is limited, except for the continuous injection at intermediate injection rate. But even for this injection strategy, the Ca2+2+ precipitation efficiency shows no significant dependence on the initial biomass distribution.
  • Thumbnail Image
    Item
    Microbially enhanced carbon capture and storage by mineral-trapping and solubility-trapping
    (2010-07) Mitchell, Andrew C.; Dideriksen, K.; Spangler, Lee H.; Cunningham, Alfred B.; Gerlach, Robin
    The potential of microorganisms for enhancing carbon capture and storage (CCS) via mineral-trapping (where dissolved CO2 is precipitated in carbonate minerals) and solubility trapping (as dissolved carbonate species in solution) was investigated. The bacterial hydrolysis of urea (ureolysis) was investigated in microcosms including synthetic brine (SB) mimicking a prospective deep subsurface CCS site with variable headspace pressures [p(CO2)] of 13C-CO2. Dissolved Ca2+ in the SB was completely precipitated as calcite during microbially induced hydrolysis of 5-20 g L-1 urea. The incorporation of carbonate ions from 13C-CO2 (13C-CO32-) into calcite increased with increasing p(13CO2) and increasing urea concentrations: from 8.3% of total carbon in CaCO3 at 1 g L-1 to 31% at 5 g L-1, and 37% at 20 g L-1. This demonstrated that ureolysis was effective at precipitating initially gaseous [CO2(g)] originating from the headspace over the brine. Modeling the change in brine chemistry and carbonate precipitation after equilibration with the initial p(CO2) demonstrated that no net precipitation of CO2(g) via mineral-trapping occurred, since urea hydrolysis results in the production of dissolved inorganic carbon. However, the pH increase induced by bacterial ureolysis generated a net flux of CO2(g) into the brine. This reduced the headspace concentration of CO2 by up to 32 mM per 100 mM urea hydrolyzed because the capacity of the brine for carbonate ions was increased, thus enhancing the solubility-trapping capacity of the brine. Together with the previously demonstrated permeability reduction of rock cores at high pressure by microbial biofilms and resilience of biofilms to supercritical CO2, this suggests that engineered biomineralizing biofilms may enhance CCS via solubility-trapping, mineral formation, and CO2(g) leakage reduction.
  • Thumbnail Image
    Item
    Modeling biofilm growth in the presence of carbon dioxide and water flow in the subsurface
    (2010-07) Ebigbo, Anozie; Helmig, Rainer; Cunningham, Alfred B.; Class, Holger; Gerlach, Robin
    The concentration of greenhouse gases—particularly carbon dioxide (CO2)—in the atmosphere has been on the rise in the past decades. One of the methods which have been proposed to help reduce anthropogenic CO2 emissions is the capture of CO2 from large, stationary point sources and storage in deep geological formations. The caprock is an impermeable geological layer which prevents the leakage of stored CO2, and its integrity is of utmost importance for storage security. Due to the high pressure build-up during injection, the caprock in the vicinity of the well is particularly at risk of fracturing. Biofilms could be used as biobarriers which help prevent the leakage of CO2 through the caprock in injection well vicinity by blocking leakage pathways. The biofilm could also protect well cement from corrosion by CO2-rich brine.The goal of this paper is to develop and test a numerical model which is capable of simulating the development of a biofilm in a CO2 storage reservoir. This involves the description of the growth of the biofilm, flow and transport in the geological formation, and the interaction between the biofilm and the flow processes. Important processes which are accounted for in the model include the effect of biofilm growth on the permeability of the formation, the hazardous effect of supercritical CO2 on suspended and attached bacteria, attachment and detachment of biomass, and two-phase fluid flow processes. The model is tested by comparing simulation results to experimental data.
  • Thumbnail Image
    Item
    Imaging biologically induced mineralization in fully hydrated flow systems
    (2011) Schultz, Logan N.; Pitts, Betsey; Mitchell, Andrew C.; Cunningham, Alfred B.; Gerlach, Robin
    A number of proposed technologies involve the controlled implementation of biologically induced carbonate mineral precipitation in the geologic subsurface. Examples include the enhancement of soil stability [1], immobilization of groundwater contaminants such as strontium and uranium [2], and the enhancement of oil recovery and geologic carbon sequestration via controlled permeability reduction [3]. The most significant challenge in these technologies remains to identify and better understand an industrially, environmentally, and economically viable carbonate precipitation route.One of the most promising routes is ureolytic biomineralization, because of the ample availability of urea and the controllable reaction rate. In this process, ureolytic bacteria hydrolyze urea, leading to an increase in pH. In the presence of calcium, this process favors the formation of solid calcium carbonate, as illustrated in the following equations:CO(NH2)2 + H2O → NH2COOH + NH3→ 2 NH3 + CO2 (Urea hydrolysis) (1)2 NH3 + 2 H2O ↔ 2NH4+ + 2OH– (pH increase) (2)CO2 + 2 OH– ↔ CO32– + H2O(Carbonate ion formation) (3)CO32– + Ca2+ ↔ CaCO3 (solid)(Precipitation is favored at high pH) (4)This process relies on molecular-level chemical and biological processes that must be better understood for large-scale implementation.Researchers at the Center for Biofilm Engineering at Montana State University (USA) and Aberystwyth University (UK) have conducted several biomineralization experiments in simulated porous media reactors. Microscopy has proven to be one of the most useful analytical tools in these studies, providing the ability to non-invasively visualize, differentiate, and quantify the various components, including the cells, cell matrix, and mineral precipitates. Because of the possibility of real-time observation and the lack of dehydration artifacts, microscopy has been tremendously useful for elucidating the temporal and spatial relationships of these components.
  • Thumbnail Image
    Item
    Floating treatment wetlands for domestic wastewater treatment
    (2011-11) Faulwetter, J. L.; Burr, Mark D.; Cunningham, Alfred B.; Stewart, Frank M.; Camper, Anne K.; Stein, Otto R.
    Floating islands are a form of treatment wetland characterized by a mat of synthetic matrix at the water surface into which macrophytes can be planted and through which water passes. We evaluated two matrix materials for treating domestic wastewater, recycled plastic and recycled carpet fibers, for chemical oxygen demand (COD) and nitrogen removal. These materials were compared to pea gravel or open water (control). Experiments were conducted in laboratory scale columns fed with synthetic wastewater containing COD, organic and inorganic nitrogen, and mineral salts. Columns were unplanted, naturally inoculated, and operated in batch mode with continuous recirculation and aeration. COD was efficiently removed in all systems examined (>90% removal). Ammonia was efficiently removed by nitrification. Removal of total dissolved N was ∼50% by day 28, by which time most remaining nitrogen was present as NO3-N. Complete removal of NO3-N by denitrification was accomplished by dosing columns with molasses. Microbial communities of interest were visualized with denaturing gradient gel electrophoresis (DGGE) by targeting specific functional genes. Shifts in the denitrifying community were observed post-molasses addition, when nitrate levels decreased. The conditioning time for reliable nitrification was determined to be approximately three months. These results suggest that floating treatment wetlands are a viable alternative for domestic wastewater treatment.
  • Thumbnail Image
    Item
    NMR relaxation measurements of biofouling in model and geological porous media
    (2011-09) Codd, Sarah L.; Vogt, Sarah J.; Hornemann, Jennifer A.; Phillips, Adrienne J.; Maneval, James E.; Romanenko, K. R.; Hansen, L.; Cunningham, Alfred B.; Seymour, Joseph D.
    Recently 2D nuclear magnetic resonance (NMR) relaxation techniques have been able to access changes in pore structures through surface and diffusion based relaxation measurements. This research investigates the applicability of these methods for measuring pore and surface changes due to biofilm growth in various model porous systems and natural geological media. Model bead packs of various construction containing 100 lm borosilicate and soda lime glass beads were used to demonstrate how changes in the measured relaxation rates can be used to non-invasively verify and quantify biofilm growth in porous media. However significant challenges are shown to arise when trying to implement the same techniques to verify biofilm growth in a natural geological media.
  • Thumbnail Image
    Item
    Experimental observation of signature changes in bulk soil electrical conductivity in response to engineered surface CO2 leakage
    (2012-03) Zhou, Xiaobing; Lakkaraju, V. R.; Apple, Martha E.; Dobeck, Laura M.; Gullickson, K.; Shaw, Joseph A.; Cunningham, Alfred B.; Wielopolski, Lucian; Spangler, Lee H.
    Experimental observations of signature changes of bulk soil electrical conductivity (EC) due to CO2 leakage were carried out at a field site at Bozeman, Montana, to investigate the change of soil geophysical properties in response to possible leakage of geologically sequestered CO2. The dynamic evolution of bulk soil EC was measured during an engineered surface leakage of CO2 through in situ continuous monitoring of bulk soil EC, soil moisture, soil temperature, rainfall rate, and soil CO2 concentration to investigate the response of soil bulk EC signature to CO2 leakage. Observations show that: (1) high soil CO2 concentration due to CO2 leakage enhances the dependence of bulk soil EC on soil moisture. The bulk soil EC is a linear multivariate function of soil moisture and soil temperature, the coefficient for soil moisture increased from 2.111 dS for the non-leaking phase to 4.589 dS for the CO2 leaking phase; and the coefficient for temperature increased from 0.003 dS/°C for the non-leaking phase to 0.008 dS/°C for the CO2 leaking phase. The dependence of bulk soil EC on soil temperature is generally weak, but leaked CO2 enhances the dependence,(2)after the CO2 release, the relationship between soil bulk EC and soil CO2 concentration observes three distinct CO2 decay modes. Rainfall events result in sudden changes of soil moisture and are believed to be the driving forcing for these decay modes, and (3) within each mode, increasing soil CO2 concentration results in higher bulk soil EC. Comparing the first 2 decay modes, it is found that the dependence of soil EC on soil CO2 concentration is weaker for the first decay mode than the second decay mode.
  • Thumbnail Image
    Item
    Potential CO2 leakage reduction through biofilm-induced calcium carbonate precipitation
    (2013-01) Phillips, Adrienne J.; Lauchnor, Ellen G.; Eldring, Joseph; Esposito, R.; Mitchell, Andrew C.; Gerlach, Robin; Cunningham, Alfred B.; Spangler, Lee H.
    Mitigation strategies for sealing high permeability regions in cap rocks, such as fractures or improperly abandoned wells, are important considerations in the long term security of geologically stored carbon dioxide (CO2). Sealing technologies using low-viscosity fluids are advantageous in this context since they potentially reduce the necessary injection pressures and increase the radius of influence around injection wells. Using aqueous solutions and suspensions that can effectively promote microbially induced mineral precipitation is one such technology. Here we describe a strategy to homogenously distribute biofilm-induced calcium carbonate (CaCO3) precipitates in a 61 cm long sandfilled column and to seal a hydraulically fractured, 74 cm diameter Boyles Sandstone core. Sporosarcina pasteurii biofilms were established and an injection strategy developed to optimize CaCO3 precipitation induced via microbial urea hydrolysis. Over the duration of the experiments, permeability decreased between 2 and 4 orders of magnitude in sand column and fractured core experiments, respectively. Additionally, after fracture sealing, the sandstone core withstood three times higher well bore pressure than during the initial fracturing event, which occurred prior to biofilm-induced CaCO3 mineralization. These studies suggest biofilm-induced CaCO3 precipitation technologies may potentially seal and strengthen fractures to mitigate CO2 leakage potential.
  • Thumbnail Image
    Item
    Abandoned well CO2 leakage mitigation using biologically induced mineralization: Current progress and future directions
    (2013-02) Cunningham, Alfred B.
    Methods of mitigating leakage or re-plugging abandoned wells before exposure to CO2are of high potential interest to prevent leakage of CO2 injected for geologic carbon sequestration in depleted oil and gas reservoirs where large numbers of abandoned wells are often present. While CO2resistant cements and ultrafine cements are being developed, technologies that can be delivered via low viscosity fluids could have significant advantages including the ability to plug small aperture leaks such as fractures or delamination interfaces. Additionally there is the potential to plug rock formation pore space around the wellbore in particularly problematic situations. We are carrying out research on the use of microbial biofilms capable of inducing the precipitation of crystalline calcium carbonate using the process of ureolysis. This method has the potential to reduce well bore permeability, coat cement to reduce CO2–related corrosion, and lower the risk of unwanted upward CO2 migration. In this spotlight, we highlight research currently underway at the Center for Biofilm Engineering (CBE) at Montana State University (MSU) in the area of ureolytic biomineralization sealing for reducing CO2 leakage risk. This research program combines two novel core testing systems and a 3-dimensional simulation model to investigate biomineralization under both radial and axial flow conditions and at temperatures and pressures which permit CO2 to exist in the supercritical state.This combination of modeling and experimentation is ultimately aimed at developing and verifying biomineralization sealing technologies and strategies which can successfully be applied at the field scale for carbon capture and geological storage (CCGS) projects.
  • Thumbnail Image
    Item
    Engineered applications of ureolytic biomineralization: A review
    (2013-07) Phillips, Adrienne J.; Gerlach, Robin; Lauchnor, Ellen G.; Mitchell, Andrew C.; Cunningham, Alfred B.; Spangler, Lee H.
    Microbially induced calcium carbonate (CaCO3) precipitation (MICP) is a widely explored and promising technology for use in various engineering applications. In this review, CaCO3 precipitation induced via urea hydrolysis (ureolysis) is examined for improving construction materials, cementing porous media, hydraulic control, and remediating environmental concerns. The control of MICP is explored through the manipulation of three factors: (1) the ureolytic activity (of microorganisms), (2) the reaction and transport rates of substrates, and (3) the saturation conditions of carbonate minerals. Many combinations of these factors have been researched to spatially and temporally control precipitation. This review discusses how optimization of MICP is attempted for different engineering applications in an effort to highlight the key research and development questions necessary to move MICP technologies toward commercial scale applications.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.