Scholarship & Research
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/1
Browse
2 results
Search Results
Item Seasonality and alternative floral resources affect reproductive success of the alfalfa leafcutting bee, Megachile rotundata(Taylor & Francis, 2024-08) Delphia, Casey M.; Burkle, Laura A.; Botti-Anderson, Joshua M.; O'Neill, Kevin M.Background: Managed populations of the alfalfa leafcutting bee (ALCB), Megachile rotundata (F.), are often not sustainable. In addition to numerous mortality factors that contribute to this, the dense bee populations used to maximize alfalfa pollination quickly deplete floral resources available to bees later in the summer. Providing alternative floral resources as alfalfa declines may help to improve ALCB reproduction. Methods: We examined the relationship between floral resource availability and ALCB reproduction and offspring condition via (1) a field study using alfalfa plots with and without late-blooming wildflower strips to supply food beyond alfalfa bloom, and (2) a field-cage study in which we provided bees with alfalfa, wildflowers, or both as food resources. Results: In the field study, bee cell production closely followed alfalfa floral density with an initial peak followed by large declines prior to wildflower bloom. Few bees visited wildflower strips, whose presence or absence was not associated with any measure of bee reproduction. However, we found that female offspring from cells provisioned earlier in the season, when alfalfa predominated as a source of provisions, eclosed with greater body sizes and proportion body lipids relative to total body mass. For bees restricted to cages, the proportion of offspring that survived to adults was highest on pure alfalfa diets. Adding wildflowers to cages with alfalfa did not affect adult offspring production or female offspring body size and lipid content. Furthermore, although similar numbers of adults were produced on wildflowers alone as with alfalfa alone, females eclosed with smaller body sizes and lower proportion body lipids on wildflowers despite the higher protein content we estimated for wildflower pollen. We found no evidence that adding the late-season wildflower species that we chose to plant enhanced ALCB offspring numbers. Our results highlight the importance of considering multiple measures of reproductive success, including offspring body size and lipid stores, when designing and evaluating floral resource management strategies for agroecosystems.Item Effects of Temperature and Wildflower Strips on Survival and Macronutrient Stores of the Alfalfa Leafcutting Bee (Hymenoptera: Megachilidae) Under Extended Cold Storage(Oxford University Press, 2022-08) Park, Mia G.; Delphia, Casey M.; Prince, Cassandra; Yocum, George D.; Rinehart, Joseph P.; O’Neill, Kevin M.; Burkle, Laura A.; Bowsher, Julia H.; Greenlee, Kendra J.Megachile rotundata (F.) is an important pollinator of alfalfa in the United States. Enhancing landscapes with wildflowers is a primary strategy for conserving pollinators and may improve the sustainability of M. rotundata. Changing cold storage temperatures from a traditionally static thermal regime (STR) to a fluctuating thermal regime (FTR) improves overwintering success and extends M. rotundata’s shelf life and pollination window. Whether floral resources enhance overwintering survival and/or interact with a thermal regime are unknown. We tested the combined effects of enhancing alfalfa fields with wildflowers and thermal regime on survival and macronutrient stores under extended cold storage (i.e., beyond one season). Megachile rotundata adults were released in alfalfa plots with and without wildflower strips. Completed nests were harvested in September and stored in STR. After a year, cells were randomly assigned to remain in STR for 6 months or in FTR for a year of extended cold storage; emergence rates were observed monthly. Macronutrient levels of emerged females were assessed. FTR improved M. rotundata survival but there was no measurable effect of wildflower strips on overwintering success or nutrient stores. Timing of nest establishment emerged as a key factor: offspring produced late in the season had lower winter survival and dry body mass. Sugars and glycogen stores increased under FTR but not STR. Trehalose levels were similar across treatments. Total lipid stores depleted faster under FTR. While wildflowers did not improve M. rotundata survival, our findings provide mechanistic insight into benefits and potential costs of FTR for this important pollinator.