Scholarship & Research

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/1

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Yellowstone Cutthroat Trout Recovery in Yellowstone Lake: Complex Interactions Among Invasive Species Suppression, Disease, and Climate Change
    (Wiley, 2023-10) Glassic, Hayley C.; Chagaris, David D.; Guy, Christopher S.; Tronstad, Lusha M.; Lujan, Dominque R.; Briggs, Michelle A.; Albertson, Lindsey K.; Brenden, Travis O.; Walsworth, Timothy E.; Koel, Todd M.
    n Yellowstone Lake, Wyoming, the largest inland population of nonhybridized Yellowstone Cutthroat Trout Oncorhynchus clarkii bouvieri, hereafter Cutthroat Trout, declined throughout the 2000s because of predation from invasive Lake Trout Salvelinus namaycush, drought, and whirling disease Myxobolus cerebralis. To maintain ecosystem function and conserve Cutthroat Trout, a Lake Trout gill netting suppression program was established in 1995, decreasing Lake Trout abundance and biomass. Yet, the response of Cutthroat Trout to varying Lake Trout suppression levels, collectively with the influence of disease and climate, is unknown. We developed an ecosystem model (calibrated to historical data) to forecast (2020–2050) whether Cutthroat Trout would achieve recovery benchmarks given disease, varying suppression effort, and climate change. Lake Trout suppression influenced Cutthroat Trout recovery; current suppression effort levels resulted in Cutthroat Trout recovering from historical lows in the early 2000s. However, Cutthroat Trout did not achieve conservation benchmarks when incorporating the influence of disease and climate. Therefore, the National Park Service intends to incorporate age‐specific abundance, spawner biomass, or both in conservation benchmarks to provide better indication of how management actions and environmental conditions influence Cutthroat Trout. Our results illustrate how complex interactions within an ecosystem must be simultaneously considered to establish and achieve realistic benchmarks for species of conservation concern.
  • Thumbnail Image
    Item
    Fish carcass deposition to suppress invasive lake trout through hypoxia causes limited, non-target effects on benthic invertebrates in Yellowstone Lake
    (Wiley, 2022-10) Briggs, Michelle A.; Albertson, Lindsey K.; Lujan, Dominique R.; Tronstad, Lusha M.; Glassic, Hayley C.; Guy, Christopher S.
    Invasive species can have negative effects on native biodiversity and ecosystem function, and suppression is often required to minimize the effects. However, management actions to suppress invasive species may cause negative, unintended effects on non-target taxa. Across the United States, lake trout (Salvelinus namaycush) are invasive in many freshwater ecosystems, reducing native fish abundance and diversity through predation and competition. In an integrated pest management approach, lake trout embryos in Yellowstone Lake, Wyoming, are suppressed by depositing lake trout carcasses onto spawning sites; the carcasses reduce dissolved oxygen concentrations as they decay, causing embryo mortality. We conducted a field experiment during one ice-free season at four sites in Yellowstone Lake to investigate the non-target effects of carcass treatment on benthic invertebrates, which could have consequences for native fish diets. While overall invertebrate density and biomass did not respond to carcass treatment, Chironomidae midges and Sphaeriidae fingernail clams decreased in abundance. Carcass treatment altered invertebrate community structure based on density, but not biomass. Carcass treatment to suppress invasive fish embryos has spatially localized, non-target effects on some benthic invertebrate taxa. Given the small spatial extent of carcass treatment within the lake, we conclude it is unlikely that carcass treatment will alter food availability for native fishes.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.