Scholarship & Research

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/1

Browse

Search Results

Now showing 1 - 2 of 2
  • Thumbnail Image
    Item
    Biofilm reactors for the treatment of used water in space:potential, challenges, and future perspectives
    (Elsevier BV, 2023-12) Espinosa-Ortiz, Erika J.; Gerlach, Robin; Peyton, Brent M.; Roberson, Luke; Yeh, Daniel H.
    Water is not only essential to sustain life on Earth, but also is a crucial resource for long-duration deep space exploration and habitation. Current systems in space rely on the resupply of water from Earth, however, as missions get longer and move farther away from Earth, resupply will no longer be a sustainable option. Thus, the development of regenerative reclamation water systems through which useable water can be recovered from “waste streams” (i.e., used waters) is sorely needed to further close the loop in space life support systems. This review presents the origin and characteristics of different used waters generated in space and discusses the intrinsic challenges of developing suitable technologies to treat such streams given the unique constrains of space exploration and habitation (e.g., different gravity conditions, size and weight limitations, compatibility with other systems, etc.). In this review, we discuss the potential use of biological systems, particularly biofilms, as possible alternatives or additions to current technologies for water reclamation and waste treatment in space. The fundamentals of biofilm reactors, their advantages and disadvantages, as well as different reactor configurations and their potential for use and challenges to be incorporated in self-sustaining and regenerative life support systems in long-duration space missions are also discussed. Furthermore, we discuss the possibility to recover value-added products (e.g., biomass, nutrients, water) from used waters and the opportunity to recycle and reuse such products as resources in other life support subsystems (e.g., habitation, waste, air, etc.).
  • Thumbnail Image
    Item
    Naegleria fowleri Detected in Grand Teton National Park Hot Springs
    (American Chemical Society, 2024-01) Barnhart, Elliot P.; Kinsey, Stacey M.; Wright, Peter R.; Caldwell, Sara L.; Hill, Vince; Kahler, Amy; Mattioli, Mia; Cornman, Robert S.; Iwanowicz, Deborah; Eddy, Zachary; Halonen, Sandra; Mueller, Rebecca; Peyton, Brent M.; Puzon, Geoffrey J.
    The free-living thermophilic amoeba Naegleria fowleri (N. fowleri) causes the highly fatal disease primary amoebic meningoencephalitis. The environmental conditions that are favorable to the growth and proliferation of N. fowleri are not well-defined, especially in northern regions of the United States. In this study, we used culture-based methods and multiple molecular approaches to detect and analyzeN. fowleri and other Naegleria spp. in water, sediment, and biofilm samples from five hot spring sites in Grand Teton National Park, Wyoming, U.S.A. These results provide the first detections of N. fowleri in Grand Teton National Park and provide new insights into the distribution of pathogenic N. fowleri and other nonpathogenic Naegleria spp. in natural thermal water systems in northern latitudes.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.