Scholarship & Research
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/1
Browse
4 results
Search Results
Item Multi-environment evaluation of winter pea genotypes for winter survival and yield stability(Montana State University - Bozeman, College of Agriculture, 2024) Poudel, Amrit; Chairperson, Graduate Committee: Kevin McPhee; This is a manuscript style paper that includes co-authored chapters.Winter pea can be grown as a rotational crop for soil moisture conservation and nutrient recycling in the wheat-growing region of Montana. Development of winter hardy cultivars would increase seed yield and expand the area of adaptation of this crop. Harsh winter conditions present a significant challenge to the production of winter peas. The objective of this study was to screen pea germplasm and breeding lines for winter survival and identify genotypes with good winter hardiness for future crop production. Field trials were conducted to evaluate genotypes at Bozeman, Havre, Huntley, and Moccasin, MT in 2021, 2022, and 2023. These lines included elite winter cultivars and several checks. Winter hardiness was evaluated as the percentage of surviving plants and by agronomic performance including yield. Genotypes were evaluated based on the GGE biplot method. This analysis captured multiple variables including yield, protein content, seed size, and their overall stability across multiple years and locations of study to aid in selecting lines. Differential winter survival was observed across locations and years. Higher winter survival was seen in Bozeman and Havre. Few lines were identified as having high seed yield and stable production over years and locations. Breeding lines had higher mean yield with few good lines having stable production of greater than 2500 kg/ha. Germplasm lines showed better winter survival than breeding lines. Protein content ranged from 20% to 31%. Larger seeds were observed in Moccasin, whereas Havre had the highest protein content. Mega- environment differentiation helped to select specific genotypes based on the trait of interest for a particular environment. Several European and US lines used in the experiments having high winter hardiness record performed better for seed yield and resistance to stress. The lines identified as having high levels of cold tolerance can be used as a prospective genetic resource in pea breeding programs. Genotypes having high and stable seed yield can be considered for release as a variety and made available to producers.Item A Comprehensive Assessment of Verticillium Wilt of Potato: Present Status and Future Prospective(EScience Press, 2023-06) KC, Shreejana; Poudel, Amrit; Oli, Dipiza; Ghimire, Shirish; Angon Bishnu, Prodipto; Shafiul Islam, MDThe fungal disease Verticillium wilt is a soil-borne pathogen that is caused by Verticillium dahliae. This disease affects a wide range of crops and can cause significant yield losses. Recent findings suggest that Verticillium wilt has been affecting potato crops in abundant domains around the global world, including in North America, parts of Europe, and Asia. In some cases, the disease has been observed in fields where it has not been previously reported, indicating that it has been spreading. Farmers and researchers are working to manage the disease through a variety of measures, including rotation of crops, the use of resistant varieties of potato developed from resistant strains, and the application of fungicides. However, the potency of these measures can vary depending on the ferocity of the disease and the local growing circumstances. Overall, the recent findings of Verticillium wilt in potato underscore the importance of continued monitoring and research to better understand the disease and develop effective management strategies. This review has highlighted the up-to-date information on Verticillium wilt and management strategies. The study also helps the scientific community understand this devastating plant disease by offering a thorough review of the situation.Item Interplay of plant pathogens and host defenses: Unveiling the mechanisms and strategies for crop protection(Agriculture and Environmental Science Academy, 2024-03) Poudel, Amrit; KC, ShreejanaPlant pathogens, encompassing a diverse array of microbes including fungi, nematodes, protozoa, bacteria, and viruses, represent a significant threat to agricultural stability by compromising plant health. These microorganisms engage in a complex battle against plant immune systems, leading to diseases that can drastically diminish crop yields, degrade product quality, and in extreme cases, cause total crop failure. A comprehensive understanding of the mechanisms underlying plant infection, the specific pathogens involved, and the strategy for effective prevention is crucial for agricultural sustainability. This review paper provides a detailed examination of the multifaceted interactions between plant pathogens and their hosts, focusing on the entry mechanisms, symptom development, and prevention strategies against plant diseases. Major findings reveal the intricate ways pathogens interact with plant immune responses, the critical role of environmental factors in disease outbreaks, and the effectiveness of integrated disease management approaches. The paper concludes with a novel perspective, emphasizing the urgent need for sustainable, science-based strategies to enhance plant resistance, safeguard food security, and mitigate the economic consequences of plant pathogenic diseases. This synthesis not only advances our understanding of plant pathology but also sets a framework for future research directions in plant disease management.Item Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain(Elsevier BV, 2024-04) Bishnu Agnon, Prodipto; Shafiul Islam, M.D.; KC, Shreejana; Das, Arpan; Anjum, Nafisa; Poudel, Amrit; Akter Suchi, ShahariaHeavy metal (HM) poisoning of agricultural soils poses a serious risk to plant life, human health, and global food supply. When HM levels in agricultural soils get to dangerous levels, it harms crop health and yield. Chromium (Cr), arsenic (As), nickel (Ni), cadmium (Cd), lead (Pb), mercury (Hg), zinc (Zn), and copper (Cu) are the main heavy metals. The environment contains these metals in varying degrees, such as in soil, food, water, and even the air. These substances damage plants and alter soil characteristics, which lowers crop yield. Crop types, growing circumstances, elemental toxicity, developmental stage, soil physical and chemical properties, and the presence and bioavailability of heavy metals (HMs) in the soil solution are some of the factors affecting the amount of HM toxicity in crops. By interfering with the normal structure and function of cellular components, HMs can impede various metabolic and developmental processes. Humans are exposed to numerous serious diseases by consuming these affected plant products. Exposure to certain metals can harm the kidneys, brain, intestines, lungs, liver, and other organs of the human body. This review assesses (1) contamination of heavy metals in soils through different sources, like anthropogenic and natural; (2) the effect on microorganisms and the chemical and physical properties of soil; (3) the effect on plants as well as crop production; and (4) entering the food chain and associated hazards to human health. Lastly, we identified certain research gaps and suggested further study. If people want to feel safe in their surroundings, there needs to be stringent regulation of the release of heavy metals into the environment.