Scholarship & Research

Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/1

Browse

Search Results

Now showing 1 - 4 of 4
  • Thumbnail Image
    Item
    Water Vapor Profiling using a Widely Tunable, Amplified Diode Laser Based Differential Absorption Lidar (DIAL)
    (2009-04) Nehrir, Amin R.; Repasky, Kevin S.; Carlsten, John L.; Obland, Michael D.; Shaw, Joseph A.
    A differential absorption lidar (DIAL) instrument for automated profiling of water vapor in the lower troposphere has been designed, tested, and is in routine operation at Montana State University. The laser transmitter for the DIAL instrument uses a widely tunable external cavity diode laser (ECDL) to injection seed two cascaded semiconductor optical amplifiers (SOAs) to produce a laser transmitter that accesses the 824–841-nm spectral range. The DIAL receiver utilizes a 28-cm-diameter Schmidt–Cassegrain telescope; an avalanche photodiode (APD) detector; and a narrowband optical filter to collect, discriminate, and measure the scattered light. A technique of correcting for the wavelength-dependent incident angle upon the narrowband optical filter as a function of range has been developed to allow accurate water vapor profiles to be measured down to 225 m above the surface. Data comparisons using the DIAL instrument and collocated radiosonde measurements are presented demonstrating the capabilities of the DIAL instrument.
  • Thumbnail Image
    Item
    Observational Studies of Atmospheric Aerosols over Bozeman, Montana, Using a Two-Color Lidar, a Water Vapor DIAL, a Solar Radiometer, and a Ground-Based Nephelometer over a 24-h Period
    (2011-03) Repasky, Kevin S.; Reagan, John A.; Nehrir, Amin R.; Hoffman, David S.; Thomas, Michael J.; Carlsten, John L.; Shaw, Joseph A.; Shaw, Glenn E.
    Coordinated observational data of atmospheric aerosols were collected over a 24-h period between 2300 mountain daylight time (MDT) on 27 August 2009 and 2300 MDT on 28 August 2009 at Bozeman, Montana (45.66°N, 111.04°W, elevation 1530 m) using a collocated two-color lidar, a diode-laser-based water vapor differential absorption lidar (DIAL), a solar radiometer, and a ground-based nephelometer. The optical properties and spatial distribution of the atmospheric aerosols were inferred from the observational data collected using the collocated instruments as part of a closure experiment under dry conditions with a relative humidity below 60%. The aerosol lidar ratio and aerosol optical depth retrieved at 532 and 1064 nm using the two-color lidar and solar radiometer agreed with one another to within their individual uncertainties while the scattering component of the aerosol extinction measured using the nephelometer matched the scattering component of the aerosol extinction retrieved using the 532-nm channel of the two-color lidar and the single-scatter albedo retrieved using the solar radiometer. Using existing aerosol models developed with Aerosol Robotic Network (AERONET) data, a thin aerosol layer observed over Bozeman was most likely identified as smoke from forest fires burning in California; Washington; British Columbia, Canada; and northwestern Montana. The intrusion of the thin aerosol layer caused a change in the atmospheric radiative forcing by a factor of 1.8 ± 0.5 due to the aerosol direct effect.
  • Thumbnail Image
    Item
    National Student Solar Spectrograph Competition overview
    (2012-10) Larimer, Randal M.; Des Jardins, Angela; Shaw, Joseph A.; Kankelborg, Charles; Palmer, Christopher; Springer, Larry; Key, Joey S.
    The yearly National Student Solar Spectrograph Competition (NSSSC) is Montana Space Grant Consortium's Education and Public Outreach (EP/O) Program for NASA's Interface Region Imaging Spectrograph (IRIS) mission. The NSSSC is designed to give schools with less aerospace activity such as Minority Serving Institutions and Community Colleges an opportunity for hands on real world research experience. The NSSSC provides students from across the country the opportunity to work as part of an undergraduate interdisciplinary team to design, build and test a ground based solar spectrograph. Over the course of nine months, teams come up with their own science goals and then build an instrument to collect data in support of their goals. Teams then travel to Bozeman, MT to demonstrate their instruments and present their results in a competitive science fair environment. This paper and poster will discuss the 2011-2012 competition along with results as well as provide information on the 2012 -2013 competition opportunities.
  • Thumbnail Image
    Item
    Colors of the Yellowstone thermal pools for teaching optics
    (2015-06) Shaw, Joseph A.; Nugent, Paul W.; Vollmer, M.
    Nature provides many beautiful optical phenomena that can be used to teach optical principles. Here we describe an interdisciplinary education project based on a simple computer model of the colors observed in the famous thermal pools of Yellowstone National Park in the northwestern United States. The primary wavelength-dependent parameters that determine the widely varying pool colors are the reflectance of the rocks or the microbial mats growing on the rocks beneath the water (the microbial mat color depends on water temperature) and optical absorption and scattering in the water. This paper introduces a teaching module based on a one-dimensional computer model that starts with measured reflectance spectra of the microbial mats and modifies the spectra with depth-dependent absorption and scattering in the water. This module is designed to be incorporated into a graduate course on remote sensing systems, in a section covering the propagation of light through air and water, although it could be adapted to a general university optics course. The module presents the basic 1-D radiative transfer equation relevant to this problem, and allows them to build their own simple model. Students can then simulate the colors that would be observed for different variations of the microbial mat reflectance spectrum, skylight spectrum, and water depth.
Copyright (c) 2002-2022, LYRASIS. All rights reserved.