Scholarship & Research
Permanent URI for this communityhttps://scholarworks.montana.edu/handle/1/1
Browse
21 results
Filters
Settings
Search Results
Item Biogeochemical and historical drivers of microbial community composition and structure in sediments from Mercer Subglacial Lake, West Antarctica(Springer Science and Business Media LLC, 2023-01) Davis, Christina L.; Venturelli, Ryan A.; Michaud, Alexander B.; Hawkings, Jon R.; Achberger, Amanda M.; Vick-Majors, Trista J.; Rosenheim, Brad E.; Dore, John E.; Steigmeyer, August; Skidmore, Mark L.; Barker, Joel D.; Benning, Liane G.; Siegfried, Matthew R.; Priscu, John C.; Christner, Brent C.; Barbante, Carlo; Bowling, Mark; Burnett, Justin; Campbell, Timothy; Collins, Billy; Dean, Cindy; Duling, Dennis; Fricker, Helen A.; Gagnon, Alan; Gardner, Christopher; Gibson, Dar; Gustafson, Chloe; Harwood, David; Kalin, Jonas; Kasic, Kathy; Kim, Ok-Sun; Krula, Edwin; Leventer, Amy; Li, Wei; Lyons, W. Berry; McGill, Patrick; McManis, James; McPike, David; Mironov, Anatoly; Patterson, Molly; Roberts, Graham; Rot, James; Trainor, Cathy; Tranter, Martyn; Winans, John; Zook, BobIce streams that flow into Ross Ice Shelf are underlain by water-saturated sediments, a dynamic hydrological system, and subglacial lakes that intermittently discharge water downstream across grounding zones of West Antarctic Ice Sheet (WAIS). A 2.06 m composite sediment profile was recently recovered from Mercer Subglacial Lake, a 15 m deep water cavity beneath a 1087 m thick portion of the Mercer Ice Stream. We examined microbial abundances, used 16S rRNA gene amplicon sequencing to assess community structures, and characterized extracellular polymeric substances (EPS) associated with distinct lithologic units in the sediments. Bacterial and archaeal communities in the surficial sediments are more abundant and diverse, with significantly different compositions from those found deeper in the sediment column. The most abundant taxa are related to chemolithoautotrophs capable of oxidizing reduced nitrogen, sulfur, and iron compounds with oxygen, nitrate, or iron. Concentrations of dissolved methane and total organic carbon together with water content in the sediments are the strongest predictors of taxon and community composition. δ¹³C values for EPS (−25 to −30‰) are consistent with the primary source of carbon for biosynthesis originating from legacy marine organic matter. Comparison of communities to those in lake sediments under an adjacent ice stream (Whillans Subglacial Lake) and near its grounding zone provide seminal evidence for a subglacial metacommunity that is biogeochemically and evolutionarily linked through ice sheet dynamics and the transport of microbes, water, and sediments beneath WAIS.Item Enhanced trace element mobilization by Earth’s ice sheets(Proceedings of the National Academy of Sciences, 2020-11) Hawkings, Jon R.; Skidmore, Mark L.; Wadham, Jemma L.; Priscu, John C.; Morton, Peter L.; Hatton, Jade E.; Gardner, Christopher B.; Kohler, Tyler J.; Stibal, Marek; Bagshaw, Elizabeth A.; Steigmeyer, August; Barker, Joel; Dore, John E.; Lyons, W. Berry; Tranter, Martyn; Spencer, Robert G. M.Trace elements sustain biological productivity, yet the significance of trace element mobilization and export in subglacial runoff from ice sheets is poorly constrained at present. Here, we present size-fractionated (0.02, 0.22, and 0.45 µm) concentrations of trace elements in subglacial waters from the Greenland Ice Sheet (GrIS) and the Antarctic Ice Sheet (AIS). Concentrations of immobile trace elements (e.g., Al, Fe, Ti) far exceed global riverine and open ocean mean values and highlight the importance of subglacial aluminosilicate mineral weathering and lack of retention of these species in sediments. Concentrations are higher from the AIS than the GrIS, highlighting the geochemical consequences of prolonged water residence times and hydrological isolation that characterize the former. The enrichment of trace elements (e.g., Co, Fe, Mn, and Zn) in subglacial meltwaters compared with seawater and typical riverine systems, together with the likely sensitivity to future ice sheet melting, suggests that their export in glacial runoff is likely to be important for biological productivity. For example, our dissolved Fe concentration (20,900 nM) and associated flux values (1.4 Gmol y−1) from AIS to the Fe-deplete Southern Ocean exceed most previous estimates by an order of magnitude. The ultimate fate of these micronutrients will depend on the reactivity of the dominant colloidal size fraction (likely controlled by nanoparticulate Al and Fe oxyhydroxide minerals) and estuarine processing. We contend that ice sheets create highly geochemically reactive particulates in subglacial environments, which play a key role in trace elemental cycles, with potentially important consequences for global carbon cycling.Item Environmentally clean access to Antarctic subglacial aquatic environments(2020-10) Michaud, Alexander B.; Vick-Majors, Trista J.; Achberger, Amanda M.; Skidmore, Mark L.; Christner, Brent C.; Tranter, Martyn; Priscu, John C.Subglacial Antarctic aquatic environments are important targets for scientific exploration due to the unique ecosystems they support and their sediments containing palaeoenvironmental records. Directly accessing these environments while preventing forward contamination and demonstrating that it has not been introduced is logistically challenging. The Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project designed, tested and implemented a microbiologically and chemically clean method of hot-water drilling that was subsequently used to access subglacial aquatic environments. We report microbiological and biogeochemical data collected from the drilling system and underlying water columns during sub-ice explorations beneath the McMurdo and Ross ice shelves and Whillans Ice Stream. Our method reduced microbial concentrations in the drill water to values three orders of magnitude lower than those observed in Whillans Subglacial Lake. Furthermore, the water chemistry and composition of microorganisms in the drill water were distinct from those in the subglacial water cavities. The submicron filtration and ultraviolet irradiation of the water provided drilling conditions that satisfied environmental recommendations made for such activities by national and international committees. Our approach to minimizing forward chemical and microbiological contamination serves as a prototype for future efforts to access subglacial aquatic environments beneath glaciers and ice sheets.Item Developing and Implementing Farm Stress Training to Address Agricultural Producer Mental Health(2020-06) Cuthbertson, Courtney; Brennan, Alison; Shutske, John; Zierl, Lori; Bjornestad, Andrea; Macy, Katelyn; Schallhorn, Pam; Shelle, Gwyn; Dellifield, Jami; Leatherman, John; Lin, Esther; Skidmore, Mark L.Farmers and ranchers (agricultural producers) have higher psychological distress and suicide rates than the general population. Poorer mental health status and outcomes among producers are often attributed to the continuously challenging economic, social, and climate-related changes to agriculture as an occupation and industry. This article describes the development of a training program for agribusiness professionals from the U.S. Department of Agriculture Farm Service Agency (N = 500) who work with producers, as they regularly interact with producers and thus are in a position to readily offer helpful mental health resources. The goal of the program was for agribusiness professionals to build skills and confidence to identify and respond to distressed producers. The educational program was offered primarily online and included a 1-day in-person training to practice skills to communicate with distressed producers and refer them to appropriate mental health resources. Evaluation of the program demonstrated participants experienced gains in knowledge and skills related to identifying and helping distressed producers.Item Biogeochemical Connectivity Between Freshwater Ecosystems beneath the West Antarctic Ice Sheet and the Sub‐Ice Marine Environment(2020-03) Vick‐Majors, Trista J.; Michaud, Alexander B.; Skidmore, Mark L.; Turetta, Clara; Barbante, Carlo; Christner, Brent C.; Dore, John E.; Christianson, Knut; Mitchell, Andrew C.; Achberger, Amanda M.; Mikucki, Jill A.; Priscu, John C.Although subglacial aquatic environments are widespread beneath the Antarctic ice sheet, subglacial biogeochemistry is not well understood, and the contribution of subglacial water to coastal ocean carbon and nutrient cycling remains poorly constrained. The Whillans Subglacial Lake (SLW) ecosystem is upstream from West Antarctica's Gould‐Siple Coast ~800 m beneath the surface of the Whillans Ice Stream. SLW hosts an active microbial ecosystem and is part of an active hydrological system that drains into the marine cavity beneath the adjacent Ross Ice Shelf. Here we examine sources and sinks for organic matter in the lake and estimate the freshwater carbon and nutrient delivery from discharges into the coastal embayment. Fluorescence‐based characterization of dissolved organic matter revealed microbially driven differences between sediment pore waters and lake water, with an increasing contribution from relict humic‐like dissolved organic matter with sediment depth. Mass balance calculations indicated that the pool of dissolved organic carbon in the SLW water column could be produced in 4.8 to 11.9 yr, which is a time frame similar to that of the lakes’ fill‐drain cycle. Based on these estimates, subglacial lake water discharged at the Siple Coast could supply an average of 5,400% more than the heterotrophic carbon demand within Siple Coast embayments (6.5% for the entire Ross Ice Shelf cavity). Our results suggest that subglacial discharge represents a heretofore unappreciated source of microbially processed dissolved organic carbon and other nutrients to the Southern Ocean.Item Discovery of a hypersaline subglacial lake complex beneath Devon Ice Cap, Canadian Arctic(2018-04) Rutishauser, Anja; Blankenship, Donald D.; Sharp, Martin; Skidmore, Mark L.; Greenbaum, Jamin S.; Grima, Cyril; Schroeder, Dustin M.; Dowdeswell, Julian A.; Young, Duncan A.Subglacial lakes are unique environments that, despite the extreme dark and cold conditions, have been shown to host microbial life. Many subglacial lakes have been discovered beneath the ice sheets of Antarctica and Greenland, but no spatially isolated water body has been documented as hypersaline. We use radio-echo sounding measurements to identify two subglacial lakes situated in bedrock troughs near the ice divide of Devon Ice Cap, Canadian Arctic. Modeled basal ice temperatures in the lake area are no higher than −10.5°C, suggesting that these lakes consist of hypersaline water. This implication of hypersalinity is in agreement with the surrounding geology, which indicates that the subglacial lakes are situated within an evaporite-rich sediment unit containing a bedded salt sequence, which likely act as the solute source for the brine. Our results reveal the first evidence for subglacial lakes in the Canadian Arctic and the first hypersaline subglacial lakes reported to date. We conclude that these previously unknown hypersaline subglacial lakes may represent significant and largely isolated microbial habitats, and are compelling analogs for potential ice-covered brine lakes and lenses on planetary bodies across the solar system.Item Microbial oxidation as a methane sink beneath the West Antarctic Ice Sheet(2017-07) Michaud, Alexander B.; Dore, John E.; Achberger, Amanda M.; Christner, Brent C.; Mitchell, Andrew C.; Skidmore, Mark L.; Vick-Majors, Trista J.; Priscu, John C.Aquatic habitats beneath ice masses contain active microbial ecosystems capable of cycling important greenhouse gases, such as methane (CH4). A large methane reservoir is thought to exist beneath the West Antarctic Ice Sheet, but its quantity, source and ultimate fate are poorly understood. For instance, O2 supplied by basal melting should result in conditions favourable for aerobic methane oxidation. Here we use measurements of methane concentrations and stable isotope compositions along with genomic analyses to assess the sources and cycling of methane in Subglacial Lake Whillans (SLW) in West Antarctica. We show that sub-ice-sheet methane is produced through the biological reduction of CO2 using H2. This methane pool is subsequently consumed by aerobic, bacterial methane oxidation at the SLW sediment–water interface. Bacterial oxidation consumes >99% of the methane and represents a significant methane sink, and source of biomass carbon and metabolic energy to the surficial SLW sediments. We conclude that aerobic methanotrophy may mitigate the release of methane to the atmosphere upon subglacial water drainage to ice sheet margins and during periods of deglaciation.Item A Laurentian record of the earliest fossil eukaryotes(2017-05) Adam, Zachary R.; Skidmore, Mark L.; Mogk, David W.; Butterfield, Nicholas J.The oldest evidence of eukaryotes in the fossil record comes from a recurrent assemblage of morphologically differentiated late Paleoproterozoic to early Mesoproterozoic microfossils. Although widely distributed, the principal constituents of this Tappania-Dictyosphaera-Valeria assemblage have not hitherto been recognized on Laurentia. We have recovered all three taxa from a shallow-water shale succession in the early Mesoproterozoic Greyson Formation (Belt Supergroup, Montana, USA). An exceptionally preserved population of Tappania substantially expands the morphological range of this developmentally complex organism, suggesting phylogenetic placement within, or immediately adjacent to, crown-group eukaryotes. Correspondence with Tappania-bearing biotas from China, India, Australia, and Siberia demonstrates an open-ocean connection to the intracratonic Belt Basin and, along with broadly co-occurring macrofossils Grypania and Horodyskia, supports the recognition of a globally expressed biozone. The Greyson Formation, along with contiguous strata in Glacier National Park, is unique in preserving all currently confirmed taxa of early eukaryotic and macroscopic fossils.Item Geographic, seasonal, and precipitation chemistry influence on the abundance and activity of biological ice nucleators in rain and snow(2008-11) Christner, Brent C.; Cai, Rongman; Morris, Cindy E.; McCarter, Kevin S.; Foreman, Christine M.; Skidmore, Mark L.; Montross, Scott N.; Sands, David C.Biological ice nucleators (IN) function as catalysts for freezing at relatively warm temperatures (warmer than −10 °C). We examined the concentration (per volume of liquid) and nature of IN in precipitation collected from Montana and Louisiana, the Alps and Pyrenees (France), Ross Island (Antarctica), and Yukon (Canada). The temperature of detectable ice-nucleating activity for more than half of the samples was ≥ −5 °C based on immersion freezing testing. Digestion of the samples with lysozyme (i.e., to hydrolyze bacterial cell walls) led to reductions in the frequency of freezing (0–100%); heat treatment greatly reduced (95% average) or completely eliminated ice nucleation at the measured conditions in every sample. These behaviors were consistent with the activity being bacterial and/or proteinaceous in origin. Statistical analysis revealed seasonal similarities between warm-temperature ice-nucleating activities in snow samples collected over 7 months in Montana. Multiple regression was used to construct models with biogeochemical data [major ions, total organic carbon (TOC), particle, and cell concentration] that were accurate in predicting the concentration of microbial cells and biological IN in precipitation based on the concentration of TOC, Ca2+, and NH4+, or TOC, cells, Ca2+, NH4+, K+, PO43−, SO42−, Cl−, and HCO3−. Our results indicate that biological IN are ubiquitous in precipitation and that for some geographic locations the activity and concentration of these particles is related to the season and precipitation chemistry. Thus, our research suggests that biological IN are widespread in the atmosphere and may affect meteorological processes that lead to precipitation.Item Bacteria in subglacial environments(2008) Christner, Brent C.; Skidmore, Mark L.; Priscu, John C.; Tranter, Martyn; Foreman, Christine M.Glaciers exist where the annual temperature remains cold enough to allow snowfall to accumulate for an extended period of time and where conditions allow subsequent metamorphosis to ice. Glacial ice forms expansive continental ice sheets in the polar regions, (e.g., in Antarctica and Greenland), and at lower latitudes, ice fields (valley or alpine glaciers) and ice caps (if a volcano or mountain range is completely glaciated) exist globally at high altitude. Temperate glaciers comprise <4% of the glacial ice on the planet, but are important freshwater reservoirs and are often the sources for major rivers vital for irrigation, industry, and providing millions of people with drinking water. The Greenland and Antarctic ice sheets currently cover ~10% of the terrestrial surface (>1.5×107 km2) and contain ~75% of the freshwater on Earth (Paterson 1994). The Antarctic ice sheet alone contains ~90% of the planet's ice and, if melted, would result in a sea level rise of ~65 m (The National Snow and Ice Data Center; http://nsidc.org/).
- «
- 1 (current)
- 2
- 3
- »